
MAT8034: Machine Learning

Fang Kong

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Final Review

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

§ A simplistic view based on tasks

View based on tasks

2

Supervised learning

§ Algorithms
§ Linear regression
§ Logistic regression
§ Generalized linear models
§ Generative learning
§ Kernel methods
§ Deep learning

§ Performance
§ Generalization, regularization, model-selection

3

Unsupervised learning

§ Algorithms
§ K-means
§ Expectation Maximization
§ PCA
§ ICA

4

Reinforcement learning

§ MDP
§ Algorithms: Value iteration, policy iteration, policy evaluation, policy extraction

§ Bandits (exploration-exploitation trade-off)
§ Algorithms: ETC, epsilon-greedy, UCB, TS

§ RL
§ Model-based
§ Model-free:

§ Direct estimation, TD-learning, Q-learning

§ Policy-based: Policy gradient

§ Function approximation
§ Deep RL: value-based, policy-based 5

§ Identify the task type
§ Regression, classification, clustering, reduction, RL…

§ Determine a hypothesis class
§ Linear function, GLM, kernel, neural network->label, log-odd, value function…

§ Define the objective function
§ Maximum likelihood, empirical risk minimization

§ Optimize the objective function
§ SGD, Newton’s; EM (construct lower bound), RL (sampling)

§ Evaluate the performance
§ Generalization, regularization, model selection

View based on the workflow

6

Supervised Learning

7

Linear regression

8

Linear regression

§ LMS
§ Gradient descent
§ Normal equation

§ Justification for LMS
§ Log likelihood

9

How to represent ℎ?

§ Simplest fit

§ ℎ! 𝑥 = 𝜃" + 𝜃#𝑥# + 𝜃$𝑥$
§ Vector notation?

10

How to learn the parameter?

11

§ Least-square cost function

𝐽! =
1
2
)

%&#

'
ℎ! 𝑥 % − 𝑦 % $

Least Mean Square Algorithm

§ Thus the update rule can be written as

12

Batch & stochastic gradient descent

§ Consider the update rule
§ Repeat until converge

§ A single update, we examine all data points
§ In some modern applications, n may be in the billions or trillions!

§ E.g., we try to “predict” every word on the web

§ Idea: Sample a few points (maybe even just one!) to approximate
the gradient called Stochastic Gradient (SGD).
§ SGD is the workhorse of modern ML, e.g., pytorch & tensorflow

13

The matrix form

14

Normal equation

§ Hope to minimize 𝐽(𝜃), find 𝜃 such that ∇𝐽 𝜃 = 0

15

Some useful facts:

A Justification for Least Squares?

16

What do we expect of the noise?

17

Likelihoods!

§ Intuition: among many distributions, pick the one that agrees
with the data the most (is most “likely”)

18

Log Likelihoods!

§ For convenience, use the Log Likelihood

§ Finding a 𝜃 that maximizes the log likelihood
§ What happens?
§ Equivalent to minimizing

19

Logistic regression

20

Intuition of logistic regression

§ Consider the odd: p/(1-p) ∈ (0, +∞)
§ Consider the log odd:

§ Logit(p) := log p/(1-p) ∈ (−∞,+∞)

§ Good properties:
§ p->0, logit -> −∞; p->1, logit -> +∞
§ Symmetry: Logit(p)=-Logit(1-p)
§ Use linear model to approximate the logit: 𝜃!𝑥 ~ Logit(p)= log p/(1-p)

§ 𝑝 ~ "
"#$%&(()!*)

: = sigmoid 𝜃!𝑥 = ℎ) 𝑥
21

§

§

§

Likelihood function

22

Gradient ascent for log likelihood

23

Newton’s method

24

Newton’s method

25

§ Suppose 𝜃' − 𝜃'(# = ∆

§
)(!!),"

∆
= 𝑓.(𝜃')

§ 𝜃' − 𝜃'(# = ∆=)(!!)
)" (!!)

§ So the update rule in 1d

§ To maximizing the log likelihood?

Multi-class classification: Softmax function

26

§

§

GLM

27

GLM: Motivation

§ In the regression problem
§ In the classification problem

§ Whether these distributions can be uniformly represented?

§ If P has a a special form, then inference and learning come for free

28

The exponential family

29

§

§ 𝑦: data label (scalar)
§ 𝜂: natural parameter
§ 𝑇(𝑦): sufficient statistic
§ 𝑏(𝑦): base measure, depend on 𝑦, but not 𝜂 (scalar)
§ 𝑎(𝜂): log partition function (scalar)

An observation

30

§

§

§

GLM: Three assumptions/design choices

31

Design choice

§ Model formulation

§ Maximum log-likelihood

§ Gradient ascent to optimize

Workflow of GLMs

32

Generative learning

33

Discriminative and generative learning algorithms

§ Discriminative learning algorithms
§ Try to learn 𝑝(𝑦|𝑥)

§ Generative learning algorithms
§ Try to learn 𝑝(𝑥|𝑦) and also 𝑝(𝑦)

§ Example
§ 𝑝(𝑥|𝑦 = 1) models the distribution of elephants’ features
§ 𝑝(𝑥|𝑦 = 0) models the distribution of dogs’ features

34

Gaussian discriminant analysis

§ Assume that 𝑝(𝑥|𝑦) is distributed according to a multivariate
Gaussian distribution

35

Multivariate Gaussian distribution

§ 𝑑-dimension
§ Mean vector 𝜇 ∈ ℝ/

§ Covariance matrix Σ ∈ ℝ/×/ (symmetric, positive semi-definite)

§ ｜Σ｜denotes the determinant of the matrix Σ
§ Expectation and covariance

36

The GDA model

§ Model 𝑝(𝑥|𝑦) using a multivariate normal distribution

§ Distribution parameters

37

How to estimate the parameters?

§ The parameters are 𝜑, Σ, µ" and µ# (Usually assume common Σ)
§ The log-likelihood function for the joint distribution

38

§ Maximum likelihood yields the result (see the offline derivation)

Maximum likelihood

39

Kernel Methods

40

LMS with high-dimensional features: Disadvantages

§ Computationally expensive

§ let 𝜙(𝑥) be the vector that contains all the
monomials of 𝑥 with degree ≤ 3
§ Dimension of 𝜙 𝑥 : 𝑑,

§ When 𝑑 = 1000, 10-

§ Can we avoid this?

41

Any great form of 𝜃?

§ With the GD, 𝜃 can be represented as a linear combination
of the vectors 𝜙(𝑥)

§ By induction
§ At step 0, initialize 𝜃 = 0 = ∑. 0 ⋅ 𝜙(𝑥(.))
§ Suppose some step, 𝜃 = ∑. 𝛽. ⋅ 𝜙(𝑥(.))
§ Then in the next step

42

Idea: represent 𝜃 by 𝛽

§ Derive the update rule of 𝛽

§ Denote the inner product of the two feature vectors as 𝜙 𝑥(") , 𝜙(𝑥($))
43

Can we accelerate computation?

§ At each iteration, we need to compute
𝜙 𝑥(1) , 𝜙(𝑥(%)) , ∀𝑗, 𝑖 ∈ [𝑛]

§ Acceleration
§ 1. It does not depend on iteration, we can compute it once before

starts
§ 2. Computing the inner product does not necessarily require

computing 𝜙(𝑥 .) (see the next page)

44

Computing 𝜙 𝑥(K) , 𝜙(𝑥(L))

45

§ Above all, the computation only requires 𝑂(𝑑)

§ Update 𝛽

§ Compute the prediction

The final algorithm

46

Deep Learning

47

Computation

§ Single-layer function
§ 𝑓) 𝑥 = 𝜎(𝜃/ + 𝜃"𝑥" + 𝜃0𝑥0)

§ Multi-layer function
§ ℎ" 𝑥 = 𝜎(𝜃/ + 𝜃"𝑥" + 𝜃0𝑥0)
§ ℎ0 𝑥 = 𝜎 𝜃, + 𝜃1𝑥" + 𝜃2𝑥0
§ 𝑓) 𝑥 = 𝜎(𝜃3 + 𝜃4ℎ" + 𝜃5ℎ0)

Non-linear activation functions

§ Adding non-linearity allows the network to learn and represent
complex patterns in the data

§ Common non-linear activation functions

[source: MIT 6.S191 introtodeeplearning.com]

𝜎

𝜎 𝜎 𝜎

𝜎

𝜎 𝜎

𝜎

𝜎

Universal approximation theorem

§ Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators."
Neural networks 2.5 (1989): 359-366

Connection to the kernel methods

§ Kernel methods
§ Design the non-linear feature map function
§ The performance significantly depends on the choice of feature map
§ Feature engineering: process of choosing the feature maps

§ Neural network
§ Automatically learn the right feature map
§ Requires often less feature engineering

Feed forward vs. Backpropagation

Make a prediction

Backpropagation

2

Backpropagation (cont.)

Generalization

56

Intuition

§ Recall in previous classes
§ We typically learn a model ℎ) by minimizing the training loss/error

§ 𝐽) =
"
6
∑.7"6 ℎ) 𝑥 . − 𝑦 . 0

§ This is not the ultimate goal

§ The ultimate goal
§ Sample a test data from the test distribution 𝒟
§ Measure the model’s error on the test data (test loss/error)

§ Can be approximated by the average error on many sampled test examples

Challenges

§ The test examples are unseen
§ Even though the training set is sampled from the same distribution 𝒟, it can not

guaranteed that the test error is close to the training error
§ Minimizing training error may not lead to a small test error

§ Important concepts
§ Overfitting: the model predicts accurately on the training dataset but doesn’t

generalize well to other test examples
§ Underfitting: the training error is relatively large (typically the test error is also

relatively large)

§ How the test error is influenced by the learning procedure,
especially the choice of model parameterizations?

How about fitting a linear model?

§ The true relationship between y and x is not linear
§ Any linear model is far away from the true function
§ The training error is large, underfitting

How about fitting a linear model? (cont’d)

§ Fundamental bottleneck: linear model family’s inability to capture the
structure in the data

§ Define model bias: the test error even if we were to fit it to a very (say,
infinitely) large training dataset

How about a 5th-degree polynomial?

§ Predict well on the training set, does not work well on test examples

How about a 5th-degree polynomial? (cont’d)

§ When the training set becomes huge, the model recovers the ground-
truth

How about a 5th-degree polynomial? (cont’d)

§ Failure: fitting patterns in the data that happened to be present in the
small, finite training set (NOT the real relationship between x and y)

§ Define variance: the amount of variations across models learnt on multiple
different training datasets (drawn from the same underlying distribution)

Bias-variance trade-off

Problem setting: regression

§

§

§

Decomposition

§

§ Define ℎ234 𝑥 = 𝔼5[(ℎ5(𝑥))]
§ The model obtained by drawing an infinite number of datasets, training

on them, and averaging their predictions on x

§

Model-wise double descent

§ Recent works demonstrated that the test error can present a
“double descent” phenomenon in a range of machine learning
models including linear models and deep neural networks

Sample complexity bounds

68

Problem setting

§ To simplify, consider the classification problem with 𝑦 ∈ {0,1}
§ Training set 𝑆 = { 𝑥% , 𝑦% ; 𝑖 = 1,2, … , 𝑛}, drawn iid from 𝒟

§ For hypothesis ℎ, define training error (empirical risk/error)

§ Define the generalization error

One of PAC assumption: training
and testing set are from the same D

Theorem of generalization error

§

§ Explanation of bias/variance
§ If we switch to a larger function class ℋ′ ⊇ ℋ
§ The first term decreases: lower bias
§ The second term increases as 𝑘 increases: higher variance

Regularization

71

Regularization

§ Meaning of regularization
§ Adding an additional term to control the model complexity and prevent

overfitting

§ 𝐽(𝜃): the original loss, e.g., MSE
§ 𝑅(𝜃): the regularizer, typically non-negative
§ 𝜆 ≥ 0: regularization parameter

Model selection

73

Solution 1: Select the one with the minimum training loss?

§ Given the training set 𝑆

§ What’s the problem?
§ Lower training error prefers complex models
§ These models usually overfits

Solution 2: Hold-out cross validation

§ Split the training set 𝑆
§ 𝑆 = 𝑆89:.6(usually 70%) + 𝑆;< (usually 30%)
§ Train each model 𝑀. on 𝑆89:.6 only, to get some hypothesis ℎ.
§ Evaluate ℎ. on 𝑆;<, denote the error as (validation error)
§ Pick the hypothesis with the smallest validation error

§ The CV set plays the role of testing set
§ Evaluate the model in terms of approximate generalization error
§ Avoid overfitting

Improvement: k-fold cross validation

§

§ Typical choice: k=10

Frequentist V.S. Bayesian

§ Consider 𝜃 as the model parameter
§ Frequentist view

§ 𝜃 is constant-valued but unknown
§ We need to estimate this parameter, such as MLE

§ Bayesian review
§ 𝜃 is a random variable with unknown value
§ We can specify a prior distribution 𝑝(𝜃) on 𝜃 that expresses our “prior

beliefs” about the parameters

Bayesian view

§ Given a training set
§ Compute the posterior of 𝜃

§ To predict the label of a new data 𝑥

Maximum a posteriori (MAP)

§ Approximate the posterior distribution for 𝜃
§ Use single point estimate

§ The prior 𝑝(𝜃) is usually assumed to be
§ Parameters with smaller norm are more preferred than MLE
§ Less susceptible to overfitting

Additional term compared with MLE

Unsupervised Learning

80

K-means

81

The k-means clustering algorithm

§

Convergence analysis (cont’d)

§ Define the distortion function

§ K-means is exactly coordinate descent on 𝐽
§ 𝐽 must monotonically decrease, and the value of 𝐽 must converge

EM

84

Intuition

§ Recall that in unsupervised learning, we are given the training set
without labels

§ We can assume these data are from different underlying classes
𝑗 = 1,2, … , 𝑘

§ Each class is modeled by a Gaussian
§ The class label follows a multinomial distribution

§ Each data can only belong to one of these classes
§ Distribution parameter 𝜙 with 𝜙= ≥ 0 and ∑=𝜙= = 1

Mixture of gaussian models

§ Each data 𝑥% corresponds to a (latent) class label 𝑧%

§ 𝑧%~Multinomial(𝜙), with 𝜙1 ≥ 0 and ∑1𝜙1 = 1
§ ℙ 𝑧. = 𝑗 = 𝜙=

§ 𝑥%| 𝑧% = 𝑗 ~

Maximum likelihood

§ Log-likelihood

§ Zero the derivatives of this formula, but challenging to find the
closed-form solution

Relaxation: If we know the class label

§ The log-likelihood becomes

Lecture 5: GDA

Iterative algorithm to update 𝑧L

§ Repeat until converge
§ Guess the value of 𝑧.: compute the posterior probability

§ Based on 𝑧., use maximum likelihood to estimate parameters

Iterative algorithm to update 𝑧L

§ Repeat until converge
§ Guess the value of 𝑧.: compute the posterior probability
§ Based on 𝑧., use maximum likelihood to estimate parameters

Comparison
with existing

forms?

Expectation-Maximization

§ Repeat until converge
§ Guess the value of 𝑧.: compute the posterior probability

§ Based on 𝑧., use maximum likelihood to estimate parameters Step M

Step E

General EM: Setting

§ Recall we have the training set
§ We have a latent variable model

§ Hope to maximize the likelihood

Intuition

§ Directly optimizing the likelihood is infeasible

§ How about optimizing the lower bound of the likelihood?
§ Construct a lower bound – Step E
§ Optimizing the lower bound – Step M

Lower bound of the likelihood

§ Hope to derive the lower bound for

§ 𝑄 is any
distribution on 𝑧
with 𝑄 𝑧 ≥ 0 and
∑!𝑄 𝑧 = 1

Jensen’s inequality

Choice of Q (cont’d)

§ Hope the inequality hold with equality

§ Recall that in the Jensen’s inequality, the equality holds when X is
a constant
§ To make be a constant, let

§ Since ∑>𝑄 𝑧 = 1, it follows that

How?

Verify the equality with

§

Evidence
lower bound

(ELBO)

EM algorithm procedure

§ Foundation

§ Procedure of EM
§ Setting Q(z) = p(z|x; θ) so that ELBO(x; Q, θ) = log p(x; θ)
§ Maximizing ELBO(x; Q, θ) w.r.t θ while fixing the choice of Q

Formal procedure of EM

§

Convergence analysis

§ Objective: prove

§ Proof

Jensen’s inequality

Updating rule

Selection of Q

EM=alternating maximization on ELBO(Q, θ)

§ Define ELBO(Q, θ)

§ E step: maximizes ELBO(Q, θ) with respect to Q
§ M step: maximizes ELBO(Q, θ) with respect to θ

Hint: show that

PCA

101

Which basis to select?

§ The direction on which the data approximately lies

Intuition

§ The data has natural "spread" in some directions more than
others

§ The major axis is the direction where data varies the most
§ If we project data onto this axis, we retain the most information

(variance)

Example

§

Data Selection 1 Selection 2

Mathematical Formulation

§ The length of the projection of 𝑥 onto 𝑢 is 𝑥6𝑢
§ Maximizing the variance of the projections is equivalent to

maximize

Solution

§

§ The objective becomes finding the principal eigenvector of Σ

Extension to larger dimension

§ If we wish to project our data into a k-dimensional subspace (k < d)
§ Choose to be the top k eigenvectors of Σ

§ Due to that Σ is symmetric, 𝑢7’s will be orthogonal to each other
§ 𝑢7’s now form a new orthogonal basis for the data

Obtain new, low-dimension features

§ Represent the data in the new basis

§ PCA is also referred to as a dimensionality reduction algorithm
§ The vectors 𝑢#, . . . , 𝑢8 are called the first k principal components

of the data

ICA

109

Motivation

§ Consider the cocktail party problem
• d speakers are talking simultaneously in a room
• Place d microphones at different locations
• Each microphone records a different combination of the speakers’

voices

§ Can we recover the original speech signals of each speaker?

Problem formulation

§ Source 𝑠 ∈ ℝ/

§ Observation 𝑥 ∈ ℝ/

§ Model the observation and source

§ A is the mixing matrix

Problem formulation (cont’d)

§ Now we have multiple observations

§ The i-the data satisfies

§ Illustration
§ 𝑥=. is the acoustic reading recorded by microphone j at time i

§ 𝑠=. is the sound that speaker j was uttering at time i

Objective

§ Given observation 𝑥%, can we recover the sources?

§ How?
§ 𝑠 = 𝐴("𝑥 ≔ 𝑊𝑥

§ then 𝑠=. = 𝑊=!𝑥.

Unmixing
matrix

Maximum likelihood

§ Construct a joint distribution of the sources

§ Recall that the observation follows 𝑥 = 𝐴𝑠, 𝑠 = 𝐴,#𝑥 ≔ 𝑊𝑥

§ What’s the probability of 𝑥?
§ 𝑝* 𝑥 = 𝑝? 𝑊𝑥 |𝑊|?

How to specify a density for 𝑠?
Cannot be gaussian

Imply
independence

Selecting Sigmoid

§ Log-likelihood becomes

§ Using stochastic gradient ascent to optimize

Reinforcement Learning

116

MDP

117

Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

The Bellman Equations

§ Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

§ These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’
s’

Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

§ Repeat until convergence

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Convergence

§ How do we know the Vk vectors are going to converge?

§ Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

§ Case 2: If the discount is less than 1
§ Sketch: For any state Vk and Vk+1 can be viewed as depth

k+1 expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
§ That last layer is at best all RMAX

§ It is at worst RMIN

§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge

Policy Evaluation

§ How do we calculate the V’s for a fixed policy p?

§ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

§ Efficiency: O(S2) per iteration

§ Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with Matlab (or your favorite linear system solver)

p(s)

s

s, p(s)

s, p(s),s’
s’

Computing Actions from Values

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

§ Let’s imagine we have the optimal q-values:

§ How should we act?
§ Completely trivial to decide!

§ Important lesson: actions are easier to select from q-values than values!

Recap: Problems with Value Iteration

§ Value iteration repeats the Bellman updates:

§ Problem 1: It’s slow – O(S2A) per iteration

§ Problem 2: The “arg max” at each state rarely changes

§ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]

Policy Iteration

§ Alternative approach for optimal values:
§ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
§ Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
§ Repeat steps until policy converges

§ This is policy iteration
§ It’s still optimal!
§ Can converge (much) faster under some conditions

Policy Iteration (PI)

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:

Convergence of PI

§ 1. Improvement: Does each policy improvement step produce a better policy?

§ 2. Convergence: Does PI converge to an optimal policy?

Bandits

129

Explore-then-commit (ETC) [Garivier et al., 2016]

• There are 𝐾 = 2 arms (choices/plans/...)
• Suppose
• 𝜇. > 𝜇/
• ∆ = 𝜇. − 𝜇/

• Explore-then-commit (ETC) algorithm
• Select each arm ℎ times
• Find the empirically best arm A
• Choose 𝐴0 = 𝐴 for all remaining rounds

ℎ rounds
for 𝑎"

ℎ rounds
for 𝑎#

𝑇 − 2ℎ rounds
for the better

performed one

130

A/B testing

• Regret analysis:
𝑅𝑒𝑔 𝑇 = 𝑇 2 𝜇. − 𝔼 4

06.

7
𝜇8!

= ℎ∆ + 𝑇 − 2ℎ 2 ∆ 2 ℙ 𝜇̂. < 𝜇̂/
= ℎ∆ + 𝑇 − 2ℎ 2 ∆ 2 ℙ 𝜇̂/ − 𝜇/ − (𝜇̂.−𝜇.) > ∆

≤ ℎ∆ + 𝑇 2 ∆ 2 exp −
ℎ∆/

4

≤ 𝑂
log 𝑇
∆

• 𝑅𝑒𝑔 𝑇 = Ω 𝑇∆ if ℎ = 100
• 𝑅𝑒𝑔 𝑇 = Ω 𝑇∆ if ℎ = 𝑇/10

Explore-then-commit (cont.)
ℎ rounds

for 𝑎"
ℎ rounds

for 𝑎#
𝑇 − 2ℎ rounds
for the better

performed one

Exploration Exploitation

131

Choose ℎ = $
∆!
log &∆!

$

Sample mean

Hoeffding’s inequality

require the knowledge of ∆
Only with the best choice of ℎ
the regret would be smallest

Upper confidence bound (UCB) [Auer et al., 2002]

• With high probability ≥ 1 − 𝛿

𝜇" ∈ 𝜇̂" −
log 1/𝛿
𝑇"

, 𝜇̂" +
log 1/𝛿
𝑇"

• Optimism: Believe arms have higher rewards, encourage exploration
• The UCB value represents the reward estimates

• For each round 𝑡, select the arm

𝐴 𝑡 ∈ argmax=∈ A a𝜇= +
log 1/𝛿
𝑇=(𝑡)

132Exploitation Exploration

By Hoeffding’s inequality

Number of selections of 𝑎'

Upper confidence bound (UCB)

Sample mean

Upper confidence bound (UCB) (cont.)

• Assume arm 𝑎" is the best arm
• If sub-optimal arm 𝑎= is selected
• w/ high probability

𝜇. ≤ UCB. ≤ UCB" ≤ 𝜇" + 2
=>? ./A
7"(0)

• ⟹ 2 =>? ./A
7"(0)

≥ ∆": = 𝜇. − 𝜇"

• ⟹ 𝑇"(𝑡) ≤ 𝑂 =>? ./A
∆"
#

• By choosing 𝛿 = 1/𝑇, cumulative regret:
𝑂 4

"B.

log 𝑇
∆"/

2 ∆" = 𝑂 𝐾log 𝑇/∆
133

∆≔ min'("∆'
Without knowing ∆

Can choose 𝛿 adaptive to time 𝑡

RL

134

Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution
2. Learn values from experiences, use to make decisions

a. Direct evaluation
b. Temporal difference learning
c. Q-learning

3. Optimize the policy directly

Model-Based Learning

§ Model-Based Idea:
§ Learn an approximate model based on experiences
§ Solve for values as if the learned model were correct

§ Step 1: Learn empirical MDP model
§ Count outcomes s’ for each s, a
§ Directly estimate each entry in T(s,a,s’) from counts
§ Discover each R(s,a,s’) when we experience the transition

§ Step 2: Solve the learned MDP
§ Use, e.g., value or policy iteration, as before

Basic idea of model-free methods

§ To approximate expectations with respect to a distribution, you
can either
§ Estimate the distribution from samples, compute an expectation
§ Or, bypass the distribution and estimate the expectation from samples

directly

Direct evaluation

§ Goal: Estimate Vp(s), i.e., expected total discounted
reward from s onwards

§ Idea:
§ Use returns, the actual sums of discounted rewards from s
§ Average over multiple trials and visits to s

§ This is called direct evaluation (or direct utility
estimation)

Problems with Direct Estimation

§ What’s good about direct estimation?
§ It’s easy to understand
§ It doesn’t require any knowledge of T and R
§ It converges to the right answer in the limit

§ What’s bad about it?
§ Each state must be learned separately (fixable)
§ It ignores information about state connections
§ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

E.g., B=at home, study hard
E=at library, study hard

C=know material, go to exam

Temporal Difference Learning

§ Big idea: learn from every experience!
§ Update V(s) each time we experience a transition (s, a, s’, r)
§ Likely outcomes s’ will contribute updates more often

§ Temporal difference learning of values
§ Policy still fixed, still doing evaluation!
§ Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Example: TD Value Estimation

§ Experience transition i: (𝑠𝑖, 𝑎. , 𝑠.B , 𝑟𝑖).
§ Compute sampled value “target”: 𝑟. + 𝛾𝑉C(𝑠.B).
§ Compute “TD error”: 𝛿. = 𝑟. + 𝛾𝑉C 𝑠.B − 𝑉C 𝑠. .
§ Update: 𝑉C 𝑠. += 𝛼. ⋅ 𝛿..

i s a s' r 𝒓 + 𝛾𝑉! 𝒔" 𝑉) 𝒔 𝛿

1 B east C -1 -1 + 0 0 -1
2 C east D -1 -1 + 0 0 -1
3 D exit --- 10 10 + 0 0 +10
4 B east C -1 -1 + -1 -1 -1
5 C east D -1 -1 + 10 -1 +10
6 D exit --- 10 10 + 0 10 0
7 E north C -1 -1 + 9 0 +8

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

E, north, C, -1
C, east, D, -1
D, exit, x, +10

s V(s)
A 0
B -2
C 9
D 10
E 8

Problems with TD Value Learning

§ Model-free policy evaluation! 🎉
§ Bellman updates with running sample mean! 🎉

§ Need the transition model to improve the policy! 😱

s

s, a1 s, a2s, a0

Q-learning as approximate Q-iteration

§ Recall the definition of Q values:
§ Q*(s,a) = expected return from doing a in s and then behaving optimally

thereafter; and p*(s) = maxaQ*(s,a)

§ Bellman equation for Q values:
§ Q*(s,a) = ås’ T(s,a,s’)[R(s,a,s’) + γ maxa’ Q*(s’,a’)]

§ Approximate Bellman update for Q values:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γmaxa’Q (s’,a’)]

§ We obtain a policy from learned Q(s,a), with no model!
§ (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)

Exploration vs. Exploitation

Exploration method 1: e-greedy

§ e-greedy exploration
§ Every time step, flip a biased coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on current policy

§ Properties of e-greedy exploration
§ Every s,a pair is tried infinitely often
§ Does a lot of stupid things

§ Jumping off a cliff lots of times to make sure it hurts
§ Keeps doing stupid things for ever

§ Decay e towards 0

Method 2: Optimistic Exploration Functions

§ Exploration functions implement this tradeoff
§ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g., f(u,n) = u + k/Ön

§ Regular Q-update:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γ maxaQ (s’,a)]

§ Modified Q-update:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γ maxa f(Q (s’,a’),n(s’,a’))]

§ Note: this propagates the “bonus” back to states that lead to
unknown states as well!

Feature-Based Representations
§ Solution: describe a state using a vector of

features
§ Features are functions from states to real

numbers (often 0/1) that capture important
properties of the state

§ Example features:
§ Distance to closest ghost fGST
§ Distance to closest dot
§ Number of ghosts
§ 1 / (distance to closest dot) fDOT
§ Is Pacman in a tunnel? (0/1)
§ …… etc.

§ Can also describe a q-state (s, a) with features
(e.g., action moves closer to food)

Linear Value Functions

§ We can express V or Q (approximately) as weighted linear
functions of feature values:
§ 𝑉)(s) = 𝜃1f1(s) + 𝜃2f2(s) + … + 𝜃nfn(s)
§ 𝑄)(s,a) = 𝜃1f1(s,a) + 𝜃2f2(s,a) + … + 𝜃nfn(s,a)

§ Advantage: our experience is summed up in a few powerful numbers
§ Can compress a value function for chess (1043 states) down to about 30 weights!

§ Disadvantage: states may share features but have very different expected utility!

SGD for Linear Value Functions

§ Goal: Find parameter vector 𝜃 that minimizes the mean squared
error between the true and approximate value function

§ Stochastic gradient descent:

Temporal-Difference (TD) Learning Objective

§ In TD learning, is a data sample for the
target

§ Apply supervised learning on "training data":

§ For each data sample, update

Q-Value Function Approximation

§ Approximate the action-value function:

§ Objective: Minimize the mean squared error:

§ Stochastic Gradient Descent on a single sample

Policy Gradient

§ Simplest version:
§ Start with initial policy 𝜋(𝑠) that assigns probability to each action
§ Sample actions according to policy 𝜋
§ Update policy:

§ If an episode led to high utility, make sampled actions more likely
§ If an episode led to low utility, make sampled actions less likely

Policy Gradient in a Single-Step MDP

§ Consider a simple single-step Markov Decision Process (MDP)
§ The initial state is drawn from a distribution:
§ The process terminates after one action, yielding a reward 𝑟?:

§ Expected Value of the Policy

Likelihood Ratio Trick

§ Use the identity:

§ The gradient of the expected return can be written as:

Can be
approximated by
sampling s from

d(s) and a from 𝜋*

Extension to Multi-step MDP

§ Replace the instantaneous reward r(s,a) with the Q-value

Richard Sutton’s Reinforcement Learning: An Introduction (Chapter 13)

REINFORCE Algorithm

§ Use the cumulative reward 𝐺9 as an estimator for

§

Actor-Critic

§ Intuition
§ REINFORCE estimates the policy gradient using Monte Carlo returns
𝐺8 to approximate 𝑄(𝑠8 , 𝑎8)

§ Why not learn a trainable value function 𝑄I(𝑠, 𝑎) to estimate 𝑄C(𝑠, 𝑎)
directly?

§ Actor and critic

Actor Critic

Improve the policy
based on value

estimates provided by
the critic

Evaluate the value of
actions taken by the

actor’s policy

Training of the Actor-Critic Algorithm

§ Critic: 𝑄:(𝑠, 𝑎)
§ Learns to accurately estimate the action-value under the current actor

policy

§ Actor: 𝜋!(𝑎|𝑠)
§ Learns to take actions that maximize the critic’s estimated value

A2C: Advantageous Actor-Critic

§ Idea: Normalize the critic’s score by subtracting a baseline
function (often a value function V(s))
§ Provides more informative feedback:

§ Decrease the probability of worse-than-average actions
§ Increase the probability of better-than-average actions

§ Helps to further reduce variance in policy gradient estimates

Deep RL

160

Value methods: DQN

§ Deep Q-Network (DQN)
§ Uses a deep neural network to approximate Q(s,a)

§ → Replaces the Q-table with a parameterized function for scalability

§ The network takes state s as input, outputs Q-values for all actions a simultaneously

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.

DQN (cont.)

§ Intuition: Use a deep neural network to approximate Q(s,a)
§ Instability arises in the learning process

§ Samples {(s0, 𝑎0, 𝑠0L., 𝑟0)} are collected sequentially and do not satisfy the i.i.d.
assumption

§ Frequent updates of Q(s,a) cause instability

§ Solutions: Experience replay
§ Store transitions 𝑒8 = s8 , 𝑎8 , 𝑠8#", 𝑟8 in a replay buffer D

Sample uniformly from D to reduce sample correlation
• Dual network architecture: Use an evaluation network and a target

network for improved stability

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Target network

§ Target network 𝑄)"(𝑠, 𝑎)
• Maintains a copy of the Q-network with older parameters 𝜃M

• Parameters 𝜃M are updated periodically (every C steps) to match the evaluation
network

§ Loss Function (at iteration 𝑖)

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

DQN training procedure

§ Collect transitions using an ε-greedy exploration policy
§ Store {(s8 , 𝑎8 , 𝑠8#", 𝑟8)} into the replay buffer

§ Sample a minibatch of 𝑘 transitions from the buffer
§ Update networks:

§ Compute the target using the sampled transitions
§ Update the evaluation network Q)
§ Every C steps, synchronize the target network 𝑄)" with the evaluation

network

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Overestimation in Q-Learning

§ Q-function overestimation
§ The target value is computed as:
§ The max operator leads to increasingly larger Q-values, potentially

exceeding the true value

§ Cause of overestimation

§ The chosen action might be overestimated due to Q-function error

Double DQN

§ Uses two separate networks for action selection and value
estimation, respectively.

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)

Dueling DQN

§ Advantage function

§ Different forms of advantage aggregation

Policy network gradient

§ For stochastic policies, the probability of selecting an action is
typically modeled using a softmax function:

§ 𝑓N(𝑠, 𝑎) is a score function (e.g., logits) for the state-action pair
§ Parameterized by 𝜃, often realized via a neural network

§ Gradient of the log-form

Policy network gradient (cont.)

§ Gradient of the log-form

§ Gradient of the policy network

Back propagation Back propagation

Comparison: DQN v.s. Policy gradient

§ Q-Learning:
§ Learns a Q-value function 𝑄#(𝑠, 𝑎) parameterized by θ
§ Objective: Minimize the TD error

§ Policy gradient
§ Learns a policy 𝜋)(𝑎 ∣ 𝑠) directly, parameterized by θ
§ Objective: Maximize the expected return directly

Limitations of policy gradient methods

§ Learning rate (step size) selection is challenging in policy gradient
algorithms
§ Since the data distribution changes as the policy updates, a previously

good learning rate may become ineffective.
§ A poor choice of step size can significantly degrade performance:

§ Too large → policy diverges or collapses
§ Too small → slow convergence or stagnation

Optimization gap of the objective function

§ New policy 𝜃’ and old policy 𝜃

Sampling
inconvenience

Definition of J(𝜃’)

Initial distribution is
independent of 𝜃

Importance sampling

Importance sampling𝑝*+, approximation

TRPO Policy Constraint

§ Use KL divergence to constrain policy update magnitude:

§ In practice: use penalized objective with KL divergence penalty instead
of hard constraint

§ Update 𝜃’ and

TRPO Drawbacks

§ High variance from importance weights
§ Difficult to solve constrained optimization

Proximal Policy Optimization (PPO)

§ Clipped Surrogate Objective

Construct the lower bound:

Equivalent at r=1:

PPO: improvement over TRPO

§ 1.Clipped surrogate objective

§ 2.Generalized advantage estimation

§ Use parallel actors to collect rollouts, compute advantage estimates,
and update parameters with minibatches.

PPO: improvement over TRPO

§ 3. Adaptive penalty parameter

§ Adjust the penalty coefficient β dynamically:
§ Compute the KL value
§ If d < target / 1.5 → βß β / 2
§ If d > target × 1.5 → βß β × 2

Note: Here, 1.5 and 2 are empirical parameters, and the algorithm performance is not very sensitive to them

