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View based on tasks

= A simplistic view based on tasks

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning



Supervised learning

= Algorithms
" Linear regression
= |Logistic regression
= Generalized linear models
= Generative learning
= Kernel methods
= Deep learning

" Performance

= Generalization, regularization, model-selection



Unsupervised learning

= Algorithms
= K-means

= Expectation Maximization
= PCA
= |CA



Reinforcement learning

= MDP

= Algorithms: Value iteration, policy iteration, policy evaluation, policy extraction

= Bandits (exploration-exploitation trade-off)
= Algorithms: ETC, epsilon-greedy, UCB, TS

= RL
" Model-based

= Model-free:
= Direct estimation, TD-learning, Q-learning

= Policy-based: Policy gradient

= Function approximation
= Deep RL: value-based, policy-based



View based on the workflow

ldentify the task type
= Regression, classification, clustering, reduction, RL...
Determine a hypothesis class
" Linear function, GLM, kernel, neural network->label, log-odd, value function...
Define the objective function
= Maximum likelihood, empirical risk minimization
Optimize the objective function

= SGD, Newton’s; EM (construct lower bound), RL (sampling)

Evaluate the performance

" Generalization, regularization, model selection



Supervised Learning



Linear regression



Linear regression

= | MS

= Gradient descent

= Normal equation

= Justification for LMS
" Log likelihood



How to represent h?

= Simplest fit 5
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= \/ector notation?
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How to learn the parameter?

= Least-square cost function

1 n . .
Jo = Eziﬂ(hg (x(l)) - y(l))z
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Least Mean Square Algorithm

" Thus the update rule can be written as

4D = 00— 'S (ho(x) — y0) 5.
i=1

We write this in vector notation for j = 0,...,d as:

p(t+1) _ g(t) _ Z (he(xm) _ y(i)) ()
i=1
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Batch & stochastic gradient descent

Consider the update rule  g(t+1) =9 — )" (hg(X(i)) - y(i)) x{),

Repeat until converge i=1

A single update, we examine all data points
In some modern applications, n may be in the billions or trillions!
" E.g., we try to “predict” every word on the web

ldea: Sample a few points (maybe even just one!) to approximate
the gradient called Stochastic Gradient (SGD).

= SGD is the workhorse of modern ML, e.g., pytorch & tensorflow
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X0 — )" (X0 — )

The matrix form
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" hp(zV) — y®

| ho(zt™) =y
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Normal equation

" Hope to minimize J (@), find 8 such that Vj(8) = 0

VoI(6) = Vig(X0—5)7(X0-7)
Vo (X0)"X0 — (X0)Ty — 4" (X0) + 7 %)
Vo (67(XTX)0 — 7 (X6) — 77 (X0))

Vo (07 (X"X)0 — 2(X"9)"6)

N RN =N =

= (2X7X0 — 2X" )

= X'X0- X"y

= (X"X)"'Xx"y.

Some useful facts:
alb = bla

V. 0Tz = b

V.rl Ax = 2Ax
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A Justification for Least Squares?

We make an assumption (common in statistics) that the data are
generated according to some model (that may contain random
choices). That is,

v — gTx() 4 20).

Here, (/) is a random variable that captures “noise” that is,
unmodeled effects, measurement errors, etc.

Please keep in mind: this is just a model! As they say, all

models are wrong but some models are useful. This model
has been shockingly useful.
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What do we expect of the noise?

What properties should we expect from (/)

Again, it's a model and () is a random variable:
» E[c()] = 0 - the noise is unbiased.

» The errors for different points are independent and identically
distributed (called, iid)

E[eel)] = E[eME[Y)] for i # .

E [(gmy] _ o2

Here o is some measure of how noisy the data are. Turns out,
this effectively defines the Gaussian or Normal distribution.

and

2
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Likelihoods!

Intuition: among many distributions, pick the one that agrees
with the data the most (is most “likely”)

L(0) =p(y|X;0) Hp ()| (1) ) iid assumption

. (X( g — ))
oy
27 P 202

i—1 ¢
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Log Likelihoods!

" For convenience, use the Log Likelihood
(0) = logL(0)

nq (y) — gT )2
— 1 _
og E > exp ( =

f:l ] ( (4 — ng<¢))2)
= 0 exp [ —
ey = V2o £ 202

n

1 1 1

= nlog

2o 02 24
1=1

" Finding a 0 that maximizes the log likelihood
= What happens?
= Equivalent to minimizing %Z(y“) — e’

i=1

— (y(i) _ ng(i))%
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Logistic regression
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Intuition of logistic regression

= Consider the odd: p/(1-p) € (0, +0)
" Consider the log odd:
" Logit(p) :=log p/(1-p) € (—o0, +0)

= Good properties:
" p->0, logit -> —o0; p->1, logit -> +o0
» Symmetry: Logit(p)=-Logit(1-p)

= Use linear model to approximate the logit: 6 "x ~ Logit(p)= log p/(1-p)
1

" p~ : = sigmoid(0 "x) = hg(x)

1+exp(-0Tx) "
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Likelihood function

Let's write the Likelihood function. Recall:

P(y =1 x;0) =hs(x)
P(y =0 x;0) =1 — hy(x)

Then,

L(0) =P(y | X;0) = Hp | x; 6)
(i)

— H hg(x )y() 1 — hg(xD))1—Y exponents encode “if-then”

Taking logs to compute the log likelihood ¢(6) we have:

((0) = log L(6) = iy“) log hy(x\)) + (1 — y1)) log(1 — he(x1"))
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Gradient ascent for log likelihood
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Newton’s method

Suppose 0,, — 0,,,1 =

f(6n)—0 /
S = 1 (6,)

f(6n)
HTl o 9n+1 — A= fl (Hn)

So the updaterulein 1d 6 :=0 —

To maximizing the log likelihood?

f(0)
1'(6)

0:=40
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Multi-class classification: Softmax function

® Define the softmax function softmax : R* — R* as

softmax(ty,...,t) =

~ exp(tl) -
22?21 exp(t;)

exp.(t k)
. Z;c: 1 exp(t;)

" Let (t1,...,tx) = (0{z,---,0, x)

Ply=1|z0)

Ply=k|x;0)

exp(6{ x)
Z";z 1 exp(e;r ‘,L')

= softmax(ty, - - ,tx) =

exp(6, )

» 2‘1;21 exp(Q;rx) a

(2.9)
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GLM
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GLM: Motivation

In the regression problem y|z;6 ~ N (u,0?)
In the classification problem vy|z;0 ~ Bernoulli(¢)

Whether these distributions can be uniformly represented?

If P has a a special form, then inference and learning come for free
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The exponential family

= p(y;m) = b(y) exp(n' T(y) — a(n))

" y: data label (scalar)

" 77: natural parameter

= T(y): sufficient statistic

= b(y): base measure, depend on y, but not n (scalar)

= a(n): log partition function (scalar) 1=3"P(yin) = e > b(y)exp {n" T(y)}

— a(n) =log » _ b(y)exp {nT T(y)}
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An observation

Notice that for a Gaussian with mean p we had

1
n=upu, T(y) =y, a(n) = 5772-

We observe something peculiar:
Oya(n) =n = p=Ely] and 87a(n) = 1 = 0 = var(y)

That is, derivatives of the log partition function is the expectation
and variance. Same for Bernoulli.

[ Is this true in general?
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GLM: Three assumptions/design choices

1. y | z; 0 ~ ExponentialFamily(n). Le., given z and 0, the distribution of
y follows some exponential family distribution, with parameter 7.

2. Given z, our goal is to predict the expected value of T'(y) given .
In most of our examples, we will have T'(y) = y, so this means we
would like the prediction h(x) output by our learned hypothesis h to
satisfy h(xz) = Ely|z]. (Note that this assumption is satisfied in the
choices for hg(x) for both logistic regression and linear regression. For
instance, in logistic regression, we had hy(z) = p(y = 1|x;0) =0 p(y =
Oz;0) +1- p(y = 1|z;0) = E[y|=; 6].)

3. The natural parameter n and the inputs z are related linearly: n = 67z. - _
(Or, if n is vector-valued, then n; = 0 x.)
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Workflow of GLMs

= Model formulation

Model Parameter Natural Parameter Canonical
¢ : Bernoulli

07 x g .
0 — n ——  u : Gaussian

A : Poisson

" Maximum log-likelihood

= Gradient ascent to optimize

max log p(y | x; 0)

p(t+1) —_ p(t) 4 (y(,-) ~ By (X(f))) ()
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Generative learning
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Discriminative and generative learning algorithms

" Discriminative learning algorithms
" Try to learn p(y|x)

" Generative learning algorithms
" Try to learn p(x|y) and also p(y)

= Example
" p(x|y = 1) models the distribution of elephants’ features
" p(x|y = 0) models the distribution of dogs’ features
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Gaussian discriminant analysis

= Assume that p(x|y) is distributed according to a multivariate
Gaussian distribution
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Multivariate Gaussian distribution

= d-dimension
= Mean vector u € R?

= Covariance matrix X € R%*? (symmetric, positive semi-definite)

p(z; p, ) = (ZW)d/ilElm exp (—%(w —w)'E Nz~ u)) .

= | ¥ | denotes the determinant of the matrix X

= Expectation and covariance

BlX] = / zp(z; p, K)dz = p E[(Z — E[Z))(Z — E[Z]))"]



The GDA model

" Model p(x|y) using a multivariate normal distribution

y ~ Bernoulli(¢)
:1:|y =0 ~ N(,Lbo, Z)
.’13|y =1 ~ N(:U’la Z)

" Distribution parameters

ply) = ¢'(1—¢)"
p(zly=0) = (27r)d/12|2|1/2 5P (_;(5'7 — NO)TZ_l(x — NO))

paly=1) = s (5@ - w0 - m) )
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How to estimate the parameters?

" The parameters are @, 2, 1y and p; (Usually assume common X)
" The log-likelihood function for the joint distribution

U, po, p1,X) = log Hp(x("'), Yy ¢, o, pa, )

=1

= log | [ p(=®1y™; o, 1, £)p(y"; ).

=1

38



Maximum likelihood

" Maximum likelihood yields the result (see the offline derivation)

6 = %Zl{y“) =1}

S, 1{y® = 0}at

Ho = n :
Zi:l 1{3/(2) = 0}
ey Wy =1
M1 = n :
Zi:1 1{3/(2) =1}

1, 7;
> = n Z(x() — ,uya))(x() — ,uy@))T-
i=1



Kernel Methods

40



LMS with high-dimensional features: Disadvantages

" Computationally expensive

" et ¢ (x) be the vector that contains all the P
: : Z1
monomials of x with degree < 3 T1Zs
= Dimension of ¢(x): d3 o(z) = | T3

= When d = 1000, 10°

= Can we avoid this? T
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Any great form of 07

= With the GD, 0 can be represented as a linear combination
of the vectors ¢p(x)

" By induction
= At step 0, initialize 8 =0 =Y;0 - p(xV)
= Suppose some step, 8 = Y; 5; - p(xV)

" Then in the next step no | |
0:=60+a Z (¥ — 67 (z?)) (=)

= Z Bip(z") + o Z (" = 076(z")) ¢(=")

—Z Bi+a(y —9T¢( ")) o(z?)
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ldea: represent 0 by [

= Derive the update rule of 5
Bi =B+« (y(i) — 9T¢(m(i)))

0 =737 Bip(zD)

Pi =B+ (?J(i) - Z ﬂjﬁb(z(j))TMfU(i)))
j=1

= Denote the inner product of the two feature vectors as (qb(x(j)), cp(x(i)))
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Can we accelerate computation?

" At each iteration, we need to compute

(p(xD), p(x)),vj, i € [n]

= Acceleration

" 1. It does not depend on iteration, we can compute it once before
starts

= 2. Computing the inner product does not necessarily require
computing qb(x(i)) (see the next page)
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Computing (p(xV)), p(x1))

d
(¢(z), ¢(2)) =1+ vazzz + Z T;ixj2i25 + Z LiLjX k2525 %k
i=1

i,je{1,...,d} ij,ke{l,....d}
d d 4 d 3
=1+ Z T;2; + (Z :czzz> + (Z :czzz)
=1 1=1 1=1

= Above all, the computation only requires O (d)

(5.9)
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The final algorithm

] Update ﬁ 1. Compute all the values K(z® 20) & (¢(z®), #(z))) using equa-
tion (5.9) for all ¢, j € {1,...,n}. Set B :=0.

2. Loop:

Vie{l,...,n},B; =06+« (y(i) — zn:ﬂjK(ac(i),:c(j))) (5.11)
j=1

Or in vector notation, letting K be the n X n matrix with K;; =
K(z®,z()), we have

B:=pB+a(y— Kp)

= Compute the prediction

Z Bid( (z) Z B.K (Z)
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Deep Learning
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Computation

= Single-layer function ) fala) = 060 + 11 + 6:x7)
X
" fo(x) = a(0y + 01x1 + 03x,) <N
(\,‘w /) N 3
x %

" Multi-layer function
" hy(x) =0(0y + O1x; + 0,x5)

" h,(x) =0d(0; + 0,x1 + O5x5) Q fo ()
" fo(x) = 0(6 + 6,hy + O3h;) ha () | Qi) (\W ha ()
5D



Non-linear activation functions

= Adding non-linearity allows the network to learn and represent
complex patterns in the data

= Common non-linear activation functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelU)
Q(Z) ol2) 0(2)
0.8} '@ | ' 05| 9@ | | 4 9')
06} 3}
0
0.4} 21
0.2} e 1]
0 4 ’ -1 : 0 -
-5 0 5 -5 0 5 -5 0 5
1 7= 8%
o — o z)=max (0, z
@)= == 0@) = 5= o(z) (0, )
@)= 0@ (1-0(2) ()= 1-0(@)? ') =10’ otheres
o' (z)=0(2) o(z) o \z)= 0(2) o ~ o, otherwise

[source: MIT 6.5191 introtodeeplearning.com]



Universal approximation theorem

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

ni(x) = Relu(—5x —7.7)
n2(x) = Relu(—1.2x — 1.3)
na(x) = Relu(1.2x + 1)
ng(x) = Relu(1.2x — .2)
ns(x) = Relu(2x — 1.1)
ne(x) = Relu(5x — 5)

Z(x) = —ny(x) — nolx) — na(x)

+nql(x) + ns(x) + ng(x)

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators."
Neural networks 2.5 (1989): 359-366



Connection to the kernel methods

= Kernel methods
" Design the non-linear feature map function
" The performance significantly depends on the choice of feature map

* Feature engineering: process of choosing the feature maps

" Neural network

= Automatically learn the right feature map —

= Requires often less feature engineering —




Feed forward vs. Backpropagation

Compare outputs with correct
Outout unit é 0 v, =1(z) answer to get error derl\':z_tlves
utput units E_
Z = z Wi Vi l l a, v =1
e etz dE _ oE ay,
0z, ay, 0z,
Y = f(zk) £ = y £
) 1Z
2 = 2 Wik Y, Yk leout <
/€ H1 oE _ dE Vi
(')Zk ("yk (')Zk (’E B ()E
y]:f(zj) .) = 2 W}k?
Vi keHz2 %%
W, Zj = E Wi Xi oOF : 9E 3y,
I € Input Wi dz; dy; 9z
Input units




Make a prediction

u,J(lrl net(ll) hgl)

inputs 2 (2) outputs labels

Input layer hidden layer output layer
Two-layer feedforward neural network

Feed-forward prediction:

(1 1)
AV = 0y (netl?) = fa) (Y wi z,m) Yk = f(o)(net)) = Zu,k)h(
= > hgl) » Yk

where et =Y ulVa, net® = 3" wDhl)

J



Backpropagation

wj(lrl netgl) h(ll)

inputs outputs labels

1

L2

Input layer

hidden layer

output layer

Two-layer feedforward neural network

Feed-forward prediction:

Assume all the activation functions are sigmoid

Error function E = 1 3, (yx — di)?
g_ﬁ = Y — di
iﬁ%::ﬂmhwﬁ?ﬂén==m(1—ywhy)
= 32 = (e — di)ye(1 — )b

(2) (2) _

= wi) — wiy — nys — i)k — ye)h)

B = fay (netl?) = fy (O wihem) vk = Fiay(meti?) = fio (D

m J

w

@), )
kM

.....

(1) '
h;

net® = 3w
J

»
>

)

Y




Backpropagation (cont.)

inputs outputs labels e Error function E = § 3, (yx — di)?
(2) OE __
- " ® oy Yk T di
j
9_' Q e Dy = (1 — y)wi?)
J
2)

n oh” (1) (1) (1)
9&, O di 2oy — ) (rets?) 2m = 1" (1= 1V) @

= 9% = A (1 - h§-”) >k w;(fj) (Y& — i)Yk (1 — Y )Tm

J,m

Input layer hidden layer output layer

2
= J(lr)n < w(l) h§-1) (1 - h§-”) Dk wl(c,;'(yk — di)yk(l — Yk )Tm

Two-layer feedforward neural network

Feed-forward prediction:

h“) = f( )(net )) f( )(Z (l)l‘m) y;l— f(o (net ) f(o (Z ](\I‘J)hgl))

m J
7= (21,0000 ) > KV > Uk

v[here nett) =" wll) 2., nety) =3 wi b\

J




Generalization
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Intuition

= Recall in previous classes

* We typically learn a model hg by minimizing the training loss/error

1 . N 2
‘ Jo = 2504 (o (x®) = y©)
= This is not the ultimate goal

" The ultimate goal

= Sample a test data from the test distribution D
= Measure the model’s error on the test data (test loss/error)

L(0) = E(w,y)wD[(y — he(x))z]
= Can be approximated by the average error on many sampled test examples



Challenges

" The test examples are unseen

= Even though the training set is sampled from the same distribution D, it can not
guaranteed that the test error is close to the training error

=" Minimizing training error may not lead to a small test error
= Important concepts

= Overfitting: the model predicts accurately on the training dataset but doesn’t
generalize well to other test examples

= Underfitting: the training error is relatively large (typically the test error is also
relatively large)

" How the test error is influenced by the learning procedure,
especially the choice of model parameterizations?



How about fitting a linear model?

1.5 — 1.5
x  training data test data
best fit linear model % —— Dbest fit linear model
1.0
>
0.5 -
0.0 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 8.2: The best fit linear model has large training and test errors.

®" The true relationship between y and x is not linear
" Any linear model is far away from the true function
" The training error is large, underfitting



How about fitting a linear model? (cont’d)

0 fitting linear models on a large datast 1 ;itting linear models on a noiseless dataset

x  training data x X 2 ' x  training data
—— ground truth h* B
{.— best fit linear model

—— ground truth h™
1.04 — bestfit linear model

>
0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 8.3: The best fit linear  Figure 8.4: The best fit linear
model on a much larger dataset  model on a noiseless dataset also
still has a large training error. has a large training/test error.

* Fundamental bottleneck: linear model family’s inability to capture the
structure in the data

* Define model bias: the test error even if we were to fit it to a very (say,
infinitely) large training dataset



How about a 5th-degree polynomial?

1.5 — 1.5
x  training data test data

—— best fit 5-th degree model —— ground truth h*
1.0 — best fit 5-th degree model

1.0

>
0.5

>
0.5+

0.0 0.0+

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 8.5: Best fit 5-th degree polynomial has zero training error, but still
has a large test error and does not recover the the ground truth. This is a
classic situation of overfitting.

Predict well on the training set, does not work well on test examples



How about a 5th-degree polynomial? (cont’d)

fitting 5-th degree model on large dataset
1.5

~  training data B
—— best fit 5-th degree model 4
1.04 — ground truth h” P

0.0 0.2 0.4 0.6 0.8 1.0

= When the training set becomes huge, the model recovers the ground-
truth



How about a 5th-degree polynomial? (cont’d)

fitting 5-th degree model on different datasets

1.5 1.5 [ 1.5

x  training data
—— best fit 5-th degree model

% training data x  training data

—— best fit 5-th degree model (\

—— best fit 5-th degree model

1.0 1.0 1.0

>
0.51

> >
0.54 0.54

0.0 0.0 0.0 1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.7: The best fit 5-th degree models on three different datasets gen-
erated from the same distribution behave quite differently, suggesting the
existence of a large variance.

= Failure: fitting patterns in the data that happened to be present in the
small, finite training set (NOT the real relationship between x and y)

" Define variance: the amount of variations across models learnt on multiple
different training datasets (drawn from the same underlying distribution)



Bias-variance trade-off

/—-— Optimal Tradeoff Test Error (= Bias? +Variance)

Variance

Error

Model Complexity

Figure 8.8: An illustration of the typical bias-variance tradeoft.



Problem setting: regression

= Draw a training dataset S = {z(®,y(®}? . such that y® = h*(z(?) 4 £
where £ € N(0,0?).

" Train a model on the dataset S, denoted by hg.

= Take a test example (z,y) such that y = h*(z) + £ where £ ~ N(0, 02),
and measure the expected test error (averaged over the random draw of
the training set S and the randomness of £

MSE(z) = Es¢[(y — hs(z))’] (8.2)



Decomposition

" MSE(z) = E[(y — hs(2))"] = E[(§ + (h*(z) — hs(@)))"]

[ 1 + E[(h*(z) — hs(z))]
o? + E[(h*(z) — hs(x))’]

= Define hgyq(x) = Eg[(hs(x))]

* The model obtained by drawing an infinite number of datasets, training
on them, and averaging their predictions on x

" MSE(z) = o + E[(h*(z) — hg(x))?]
= 0+ (*(2) — hasg(@))? + El(havg — hs(@))”

= 0 +(W(®) — hay(2))’ +var(hs(z))

N
. A 3
A bi as2 = varlance

unavoidable



Model-wise double descent

"= Recent works demonstrated that the test error can present a
“double descent” phenomenon in a range of machine learning
models including linear models and deep neural networks

classical regime: modern regime:

bias-variance tradeoff over-parameterization
_A— A

typically when # parameters
is sufficient to fit the data

test error

\lf
|
|
|
I
|
|
|
|
|
|
|
|
I
I
|
|
I

# parameters



Sample complexity bounds

68



Problem setting

To simplify, consider the classification problem with y € {0,1}
Training set § = {(xi,yi); i =1,2,...,n}, drawn iid from D

For hypothesis h, define training error (empirical risk/error)
1 & | .
A(h) — (%) (%)
() = Sk #4°)

Define the generalization error e(h) = Py, ,~p(h(z) # y)

One of PAC assumption: training
nd testing set are from the same D




Theorem of generalization error

= Theorem. Let |H| =k, and let any n,d be fixed. Then with probability at
least 1 — d, we have that

e(h) < (%17216 > + 2\/— log —

= Explanation of bias/variance

= |f we switch to a larger function class H' 2 H
" The first term decreases: lower bias
* The second term increases as k increases: higher variance



Regularization
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Regularization

" Meaning of regularization

= Adding an additional term to control the model complexity and prevent
overfitting

T5(0) = J(0) + AR(6)

" /(O): the original loss, e.g., MSE
" R(60): the regularizer, typically non-negative

= 1 > 0: regularization parameter



Model selection
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Solution 1: Select the one with the minimum training loss?

" Given the training set S
1. Train each model M, on S, to get some hypothesis h;.
2. Pick the hypotheses with the smallest training error.

" What'’s the problem?

" Lower training error prefers complex models
" These models usually overfits



Solution 2: Hold-out cross validation

Split the training set S
" S = Strqin(usually 70%) + S, (usually 30%)
" Train each model M; on S;,.4;, only, to get some hypothesis h;
= Evaluate h; on S.,,, denote the error as £s., (hi) (validation error)
= Pick the hypothesis with the smallest validation error

The CV set plays the role of testing set
Evaluate the model in terms of approximate generalization error

Avoid overfitting



Improvement: k-fold cross validation

m 1. Randomly split S into k disjoint subsets of m/k training examples each.
Lets call these subsets 5, .. ., Sk.

2. For each model M;, we evaluate it as follows:

For j=1,...,k
Train the model M; on S;U---US;_;US;;1U--- S (i.e., train
on all the data except S;) to get some hypothesis h;;.
Test the hypothesis h;; on S}, to get &g, (hy;).
The estimated generalization error of model M; is then calculated
as the average of the €g,(h;;)’s (averaged over j).

3. Pick the model M; with the lowest estimated generalization error, and
retrain that model on the entire training set S. The resulting hypothesis
is then output as our final answer.

= Typical choice: k=10



Frequentist V.S. Bayesian

" Consider 8 as the model parameter

" Frequentist view
= § is constant-valued but unknown
= We need to estimate this parameter, such as MLE
0 — D ,.®. g}
MLE = arg mgXHp(y z%); 6)
= Bayesian review

" @ is arandom variable with unknown value

= We can specify a prior distribution p(6) on 6 that expresses our “prior
beliefs” about the parameters



Bayesian view

= Given a training set S = {(z®, y®)}~
" Compute the posterior of 6
p(S10)p(0)
0|S) =
p(9]5) 2(S)
(ITi=, p(y]21, 0)) p(6)
Jo ULz, p(y @]z, 0)p(0)) dO

" To predict the label of a new data x

p(ylz, S) = /ep(ylfﬂﬁ)p(ﬂs)d@ Ely|z,S] = /yp(ylwas)dy



Maximum a posteriori (MAP)

. . L (SIO)w(6)
= Approximate the posterior distribution for 8 |09 = =5
: . . (T, p@9129,6)) p(6)
" Use single point estimate = (T, p@12®, 0)p(6)) db
Oniap = arg mapr(y(i)h:(i), 0)p(0)
‘ 1=1

Additional term compared with MLE

" The prior p(0) is usually assumed to be 6 ~ A(0,72])
" Parameters with smaller norm are more preferred than MLE

" | ess susceptible to overfitting



Unsupervised Learning
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K-means
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The k-means clustering algorithm

= 1. Initialize cluster centroids ., s, . . ., ux € R? randomly.
2. Repeat until convergence: {

For every 1, set | |
e := argmin |z — ;]
j

For each 7, set

b T e = )t
’ Z?:l 1{6(2) =7}




Convergence analysis (cont’d)

= Define the distortion function

J(e,m) =) e — powl|?
1=

= K-means is exactly coordinate descent on J
" | must monotonically decrease, and the value of ] must converge



EM
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Intuition

" Recall that in unsupervised learning, we are given the training set

without labels
(2O, . ™)

" We can assume these data are from different underlying classes
=12, ..,k

= Each class is modeled by a Gaussian N (u;, %)

" The class label follows a multinomial distribution

* Each data can only belong to one of these classes
= Distribution parameter ¢ with ¢; = 0 and Z]- $; =1



Mixture of gaussian models

= Each data x! corresponds to a (latent) class label z*
= z'~Multinomial(¢), with ¢; = 0and X, ¢; = 1

" P(z' =) = ¢,
" x'|z' =]~ Ny, %)



Maximum likelihood

" |og-likelihood
U, 1, %) = Z log p(z”; ¢, 1, %)

Zlog Z p(z@|29; p, D)p(2?; ¢)

2(1)=1

m Zero the derivatives of this formula, but challenging to find the
closed-form solution



Relaxation: If we know the class label

" The log-likelihood becomes

¢, 1, %) = ) logp(z?|29; i, %) + log p(217; ¢)

=1

How to estimate the parameters?

= The parameters are @, %, Lo and p; (Usually assume common %)
* The log-likelihood function for the joint distribution

U, po; p1,X) = log | p(e®,y®; ¢, o, p1, X)

= log | [ p(=®1y"?; o, pr, £)p(y™; ¢).

Lecture 5: GDA



lterative algorithm to update z'

" Repeat until converge

= Guess the value of z!: compute the posterior probability

p(z¥]2 = j; u, D)p(2" = j; ¢)

(z) _ (i) __ .CC(Z)
= P =gl o X) = S, p(x®@]20 = 1; pu, D)p(2® = 1; ¢)

» Based on z!, use maximum likelihood to estimate parameters



lterative algorithm to update z'

" Repeat until converge

= Guess the value of z!: compute the posterior probability

» Based on z!, use maximum likelihood to estimate parameters

l ~—
o = > ouf,
=1

7: .
Z:‘L:l wj(- )x(z) Comparison
Hi = N, with existing
Zn ’LU(-Z) forms?
1=1 "7y '




Expectation-Maximization

" Repeat until converge

= Guess the value of z': compute the posterior probability DI

= Based on z!, use maximum likelihood to estimate parameters Step M



General EM: Setting

= Recall we have the training set {z®),..., z(™}
= We have a latent variable model p(z, z; 0)

" Hope to maximize the likelihood

> logp(z1; 6)
1=1

£(0)

Z log Zp(a:(i), 2. 0) « | p(z;0) =) p(z,206)
i=1 :

z(1)



Intuition

" Directly optimizing the likelihood is infeasible

" How about optimizing the lower bound of the likelihood?

= Construct a lower bound —Step E

= Optimizing the lower bound — Step M



Lower bound of the likelihood

" Hope to derive the lower bound for
log p(x;0) logprz

]
—
o
o3
g
VR
3
R
D
N—r"

Q is any
distribution on z

z ( 9) with Q(z) = 0 and
D\T, 2, 2:0(2)=1
— 1ogZQ(z) Q(z)/

Jensen’s inequality «=——— Z Z Q(Z) 10g

" log p(x; 0)




Choice of Q (cont’d)

" Hope the inequality hold with equality

How?

= Recall that in the Jensen’s inequality, the equality holds when X is
a constant

= To make p(g(z;)O) be a constant, let Q(2) x p(x, z;0)
- - p(z, 2;0)
= Since )., 0(z) = 1, it follows that Q(z) = S (7. 2:0)
_ plz,%0)
-~ p(z;0)

= p(z|z;0)



Verify the equality with Q(2) = p(z|z;0)

. p(x, z;0) p(x, z;0)
EZ:Q(Z) log =773 Zp 2|; 0) log © (z|x %
,0)p(@

Evidence
lower bound

(EL80) =Y p(z|z;0)logp(; 6)
= logp(z;0) Y _plz|z;0)

= log p(z; 0) (because ) p(z|z;0) =1)



EM algorithm procedure

" Foundation
VQ,0,z, logp(xz;0) > ELBO(z;Q,0)
" Procedure of EM
= Setting Q(z) = p(z|x; ©) so that ELBO(x; Q, 8) = log p(x; 9)
= Maximizing ELBO(x; Q, 6) w.r.t 6 while fixing the choice of Q



Formal procedure of EM

Repeat until convergence {

(E-step) For each 1, set
Qi(2%) := p(2?]2;9).

(M-step) Set

0 —argmaXZELBO (29;Qs,0)

(z®, 2, )
. (z) :C y 207
= argmax E E Qi(z log E0)

) z()



Convergence analysis

= Objective: prove £() < £(1+1)

= Proof o
£(0“V) > > "ELBO(z®; Qi 0(+V)

/ 1=1
> "ELBO(z; @[, 6%
2

~=H

Jensen’s inequality

Updating rule

g(t))

Selection of Q



EM=alternating maximization on ELBO(Q, 6)

= Define ELBO(Q, 9)

i i p(x(i)7 Z(i)S 9)
ELBO(Q, ) ZELBO .0, )—S:S:Qi(z())log 0.

[/ z(z)

" E step: maximizes ELBO(Q, 0) with respect to Q
= M step: maximizes ELBO(Q, ©) with respect to 6

Hint: show that
ELBO(z;Q,0) = Y, Q(z)log B&22
=log p(z) — Dkr(Q||p2z)
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Which basis to select?

Xy (enjoyment)
X
X

x; (skill)

" The direction on which the data approximately lies



Intuition

" The data has natural "spread" in some directions more than
others

" The major axis is the direction where data varies the most

" |f we project data onto this axis, we retain the most information
(variance)



Example

Data

Selection 1

Selection 2



Mathematical Formulation

= The length of the projection of x ontouis x'u

" Maximizing the variance of the projections is equivalent to
maximize

lzn: 07) Z“T )07,
L =1

_ 1 = (@) ()T



Solution

s We want to maximize u! Ju

T

Subjectto:u'u =1

Lagrangian:
L(u,)) =u'Zu - A(ulu-1)

Set gradient to O:

8—£:O:>Eu:)\u
ou

" The objective becomes finding the principal eigenvector of X



Extension to larger dimension

If we wish to project our data into a k-dimensional subspace (k < d)

Choose to be the top k eigenvectors of X

Due to that X is symmetric, u;’s will be orthogonal to each other

u;’s now form a new orthogonal basis for the data



Obtain new, low-dimension features

= Represent the data in the new basis

) = c R*

" PCAis also referred to as a dimensionality reduction algorithm

" The vectors u4, ..., u; are called the first k principal components
of the data



ICA
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Motivation

» Consider the cocktail party problem
* d speakers are talking simultaneously in a room
* Place d microphones at different locations

* Each microphone records a different combination of the speakers’
voices

" Can we recover the original speech signals of each speaker?



Problem formulation

= Source s € R?

= Observation x € R?

= Model the observation and source

r = As

= Ais the mixing matrix



Problem formulation (cont’d)

" Now we have multiple observations

{2®:5=1,...,n}
» The i-the data satisfies (9 = As(®

® ||lustration

. xji is the acoustic reading recorded by microphone j at time |

. Sji is the sound that speaker j was uttering at time i



Objective

" Given observation x', can we recover the sources?

" How?
Unmixing
s s = A 1y = Wx matrix
- fwf{ -
= W= 5 then s; = W}-Tx‘
_ wg .




Maximum likelihood

" Construct a joint distribution of the sources

p(s) = Hps(sj) Imply

independence

» Recall that the observation follows x = As, s = A~ 1x = Wx

" What's the probability of x? d
- px(x) — pS(Wx)IWl? | > p(a:) — HpS(w;rx) ' |W|
j=1

How to specify a density for s?
Cannot be gaussian



Selecting Sigmoid

9(2)

" | og-likelihood becomes

Z (Zlogg T g0 —|—10g|W|) |

1

g(z)= 1 +e72

g'(z)= g(z)(1-g(2))

" Using stochastic gradient ascent to optimize



Reinforcement Learning
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Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and s is a
acting optimally state
s (s, a)is a
" The value (utility) of a g-state (s,a): P < g-state
Q’(s,a) = expected utility starting out o N
having taken action a from state s and 58,5 (s,a,8") is a
, transition

(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

[Demo — gridworld values (L8D4)]



The Bellman Equations

= Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values 7

V*(s) = max Q*(s, a)

Q*(s,a) =} T(s,a,5) {R(S, a,s’) + ’yV*(s’)} o

V*(s) = mO?XZT(S,a, s") {R(s,a, s") + ny*(s')}

" These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over



Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do




Convergence

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V| and V,,1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

= That last layer is at best all Ryjax

= |tisat worst Ry / \ /

= But everything is discounted by yk that far out
= So V, and V,,; are at most y* max|R| different
= So as kincreases, the values converge



Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo(s) =0 ,s;”%f(s),s’
.

ka—l—l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + kaW(S’)]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)



Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?

=" |t’s not obvious!

We need to do a mini-expectimax (one step)

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values: WW
ANV
* How should we act? v‘.}‘
= Completely trivial to decide! e °'89 00

" |mportant lesson: actions are easier to select from g-values than values!




Recap: Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vig1(s) <= max > T(s,a,5') |R(s,a,s") + v V(s

S

* Problem 1: It’s slow — O(S2A) per iteration

" Problem 2: The “arg max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]



Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions



Policy Iteration (Pl)

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vit 1 (s) < Y. T(s,mi(s),s') |R(s,mi(s),s") + v V(s

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + ’yVWi(S/)}

S



Convergence of Pl

= 1. Improvement: Does each policy improvement step produce a better policy?

= 2. Convergence: Does Pl converge to an optimal policy?



Bandits

129



Explore-then-commit (ETC)

* There are K = 2 arms (choices/plans/...)

* Suppose

* Uy > U
* A=y — Uy [ A/B testing ]

e

e Explore-then-commit (ETC) algorithm

* Select each arm h times b rounds
* Find the empirically best arm A for a,
* Choose A; = A for all remaining rounds

T — 2h rounds
for the better
performed one



Explore-then-commit (cont.)

h rounds

* Regret analysis: for a,

T
Reg(T) =T - — E [z Sample mean
g(T) U1 t:1ll,4t/(.
=hA+ (T —2h) - A-P(1 < {i;
= hA + (T — 2h) - A - P((fp — pp) — (la—p1) > A)

hA?
<hA+T-A- exp| — 2 » Hoeffding’s inequality

Exploration Exploitation

logT 2
<0 ( Oi )\[ Choose h = [:—Zlog (%)] }

o Reg(T) — .Q(TA) ifh =100 mknowledge of A }

* Reg(T) =Q(TA)ifh=T/10

60

Expected regret

50

T — 2h rounds
for the better
performed one

0 100 200 300 400

Only with the best choice of h
the regret would be smallest
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Upper confidence bound (UCB)

* With high probability = 1 — § 8y Hoeffding’s inequality |
A logl/6 log1/6 °
A [ A i T A 7 o e
/ \ ]\ a\ J
/_ - Arm1  Arm2
Sample mean Number of selections of q;

* Optimism: Believe arms have higher rewards, encourage exploration
* The UCB value represents the reward estimates

Upper confidence bound (UCB) ]

* For each round t, select the arm

\
~ log1/6
A(t) € argmax e A + >

IREICH
Exploitation Exploration 132




Upper confidence bound (UCB) (cont.)

* Assume arm a, is the best arm

* If sub-optimal arm q; is selected . I
* w/ high probability o z N
iy < UCB, < UCB; < p; +2 [28210 ® True mean
Tj(t) Arm1 Arm 2

. log1/é6 L o
= 2 / 0 = Ajr= g — U

log 1/6)

e = T;(t) < 0(
]( ) A?Twadaptive totimet }
* By choosing 06 = 1/T, cumulative regret:
A= minj,, 4 }

logT _ |
0 2 _ A2 . Aj = O(Klog T/A) Without knowing A
J#1 j
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Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution

2. Learn values from experiences, use to make decisions
a. Direct evaluation
b. Temporal difference learning

c. Q-learning

3. Optimize the policy directly



Model-Based Learning

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Directly estimate each entry in 7(s,a,s’) from counts
= Discover each R(s,a,s’) when we experience the transition

= Step 2: Solve the learned MDP

= Use, e.g., value or policy iteration, as before




Basic idea of model-free methods

" To approximate expectations with respect to a distribution, you
can either
" Estimate the distribution from samples, compute an expectation

" Or, bypass the distribution and estimate the expectation from samples
directly



Direct evaluation

" Goal: Estimate V7(s), i.e., expected total discounted
reward from s onwards

= |dea:
= Use returns, the actual sums of discounted rewards from s

= Average over multiple trials and visits to s

* This is called direct evaluation (or direct utility
estimation)




Problems with Direct Estimation

= What'’s good about direct estimation? Output Values

" |t's easy to understand

" |t doesn’t require any knowledge of T and R

" |t converges to the right answer in the limit

= What's bad about it?
* Each state must be learned separately (fixable)

" |tignores information about state connections

If Band E both go to C
under this policy, how can
their values be different?

= So, it takes a long time to learn

E.g., B=at home, study hard
E=at library, study hard
C=know material, go to exam



Temporal Difference Learning

" Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") +~4V™(s)
Update to V(s): VT(s) «+ (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) <+ V™(s) + a(sample — V™ (s))




Example: TD Value Estimation

. .. . . /
Experience transition i: (s;, a;, S;,7;).

Compute sampled value “target”: r; + yV™(s;).

Compute “TD error”: §; = (ri + )/V”(Sl-')) —VT(s;).

Update: V™ (s;) += a; - 6;.

V(s)

0

-2

9

-
B, east, C, -1

C, east, D, -1

% D, exit, X, +10)

-
B, east, C, -1

C, east, D, -1

% D, exit, X, +10)

4 )
E, north, C, -1
C,east, D, -1

10

M{O[O|T|>]|n

8

i|s a s'"| r | r+yV™(s’) V™ (s) )
1| B | east C | -1 -1+0 0 -1
2| C| east D | -1 -1+0 0 -1
31D exit -1 10 10+ 0 0 +10
4| B east C | -1 -1+ -1 -1 -1
5| C | east D | -1 -1+ 10 -1 +10
6| D exit -1 10 10+ 0 10 0
71 E| north | C | -1 -1+9 0 +8

] +
\D, exit, X, 10)

4 )
E, north, C, -1
C, east, A, -1

% A, exit, X -10)




Problems with TD Value Learning

= Model-free policy evaluation! & &

= Bellman updates with running sample mean! & &

S

AANAANA AANAA LA AN A

» Need the transition model to improve the policy!



Q-learning as approximate Q-iteration

Recall the definition of Q values:

= OQ°(s,a) = expected return from doing a in s and then behaving optimally
thereafter; and 7' (s) = max,Q’(s,a)

Bellman equation for Q values:

" Q*(s,a) = 2y T(s,0,5')[R(s,a,s") + y max, Q*(s",a’) |
Approximate Bellman update for Q values:

" Q(s,a) « (1-a)-Qfs,a) + a-[R(s,a,s") +ymax,Q(s’,a’) ]

We obtain a policy from learned Q(s,a), with no model!
= (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)



Exploration vs. Exploitation

b7 7

AN
Srennc!

L £T0
G2




Exploration method 1: e-greedy

= ¢-greedy exploration
" Every time step, flip a biased coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy /(

" Properties of e-greedy exploration
" Every s,a pair is tried infinitely often
" Does a lot of stupid things
= Jumping off a cliff lots of times to make sure it hurts

= Keeps doing stupid things for ever
" Decay € towards O




Method 2: Optimistic Exploration Functions

Exploration functions implement this tradeoff

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g., f(u,n) =u + k/\/n

Regular Q-update: )
" Q(s,a) « (1-a) - Q(s,a) + a - [R(s,a,5") +y max,Q(s’,a) ]
Modified Q-update:

" Q(s,a) « (1-a)-Qfs,a) + a-[R(s,a,s’) +y max, f(Q(s’,a’),n(s’,a’)) ]

Note: this propagates the “bonus” back to states that lead to
unknown states as well!




Feature-Based Representations

= Solution: describe a state using a vector of
features

= Features are functions from states to real
numbers (often 0/1) that capture important
properties of the state

= Example features:

= Distance to closest ghost f..;
Distance to closest dot
Number of ghosts
1 / (distance to closest dot) ;o7
= |s Pacman in a tunnel? (0/1)
- etc.

= Can also describe a g-state (s, a) with features
(e.g., action moves closer to food)




Linear Value Functions

= We can express V or Q (approximately) as weighted linear
functions of feature values:

" Vg(s) = 0,f(s) + O,F,(s) + ... + 0. (s)
" (Jg(s,a) = 0,f,(s,a) + 0,1,(s,a) + ... + 0,f (s,a)

= Advantage: our experience is summed up in a few powerful numbers
= Can compress a value function for chess (10* states) down to about 30 weights!

= Disadvantage: states may share features but have very different expected utility!



SGD for Linear Value Functions

" Goal: Find parameter vector 6 that minimizes the mean squared
error between the true and approximate value function

1
J(6) = Eql5 (V"(s) = Vo(s))']

" Stochastic gradient descent:

0/ (6)
a0

=0+ a(V”(s) — Vy (S))

00—«

dVp(s)
a6




Temporal-Difference (TD) Learning Objective

0 <0+ a(V”(s) — Vg (s))x(s)

" InTD learning, 1:4q4 + ¥V (S¢41) is a data sample for the
target

= Apply supervised learning on "training data":
(s1,72 + YVo(52)), (52,13 + ¥V (S3)), e, (ST, 1)

" For each data sample, update

0 <0+ “(rt+1 + ¥Vo(St+1) — Vo (5))x(5t)



Q-Value Function Approximation
" Approximate the action-value function:
QB(S' a) = Qn(si a)
" Objective: Minimize the mean squared error:
1 2
J(0) = By |5 (07(s5,0) — Qg 5, @))?]

" Stochastic Gradient Descent on a single sample

0Qp(s,a)

0«0+ a(rt+1 +YQo(St+1, A1) — Qo (s, a)) 90



= Simplest version:
= Start with initial policy m(s) that assigns probability to each action

0.3
0.2
0.1

0

Policy Gradient

= Sample actions according to policy T

= Update policy:

= |f an episode led to high utility, make sampled actions more likely

= |f an episode led to low utility, make sampled actions less likely

A1 A2 A3 A4 A5

0.4
0.3
0.2
0.1

0

A1 A2 A3 A4 A5

0.4
0.3
0.2
0.1

0

A1

A2

A3 A4 A5



Policy Gradient in a Single-Step MDP

" Consider a simple single-step Markov Decision Process (MDP)
= The initial state is drawn from a distribution: s ~ d(s)

" The process terminates after one action, yielding a reward 7,

" Expected Value of the Policy

J©) = Egylr] = ) d(s) ) mp(als)rg

SES acA

a](9) z ()zaﬂe(GIS)

SES acA




Likelihood Ratio Trick

» Use the identity:  97me(als) _ 1 0dmg(als)
y a0~ el S T a6
B dlogmg(als)
= mg(als) EY:

" The gradient of the expected return can be written as:

J©) = E,lrl = ) d(s) ) 74 @l

5 ( ) sEéS‘ ( |a§A
] 6 Ttg(a|S
Ed( )Z Tsa
SES AEA  cesssasresevenc '_____I
dlogmy (als :
zd(S)zne(aIS) 870 (al ) | Can be
SES acA ""---“----------—-' approximated by

dlogmg(als) sampling s from
— LErg [ PY:) sa] d(S) and a from g



Extension to Multi-step MDP

" Replace the instantaneous reward r(s,a) with the Q-value

0/(6) _ . |dlogme(als)
00 e 00

Q™0(s,a)

Richard Sutton’s Reinforcement Learning: An Introduction (Chapter 13)



REINFORCE Algorithm

= Use the cumulative reward G, as an estimator for Q™¢(s, a)

" initialize 6 arbitrarily
for each episode {s{,a,ry,...,ST_1,aT-1,I'T}~Tg dO
for t=1 to T—1 do

0 <0+ a%logne (a;|s;)Gy
end for

end for
return @



Actor-Critic

" |ntuition

= REINFORCE estimates the policy gradient using Monte Carlo returns
G; to approximate Q(s¢, a;)

= Why not learn a trainable value function Q4 (s, a) to estimate Q" (s, a)
directly?

= Actor and critic

————————————————————————————————————————————————————————

Actor g (als) Critic  Qo(s,a)

Improve the policy
based on value
estimates provided by
the critic

Evaluate the value of
actions taken by the
actor’s policy

P B
e o o e o = =

[ J N U U ———— - N, w e - - - - - - = - = -



Training of the Actor-Critic Algorithm

= Critic: Qg (s, a)
= Learns to accurately estimate the action-value under the current actor
policy
Q(D (S, Cl) = T'(S, (1) T y]E5'~p(S'|S,a),a'~7T9(a'|S') [QCD (S’, a’)]

= Actor: mg(als)
= | earns to take actions that maximize the critic’s estimated value
J(0) = Esepnylme(als)Qa(s, a)l

0j(0) _ . [0logme(als)
a0 o 00

QCD (S' a)



O =~ N W OO

A2C: Advantageous Actor-Critic

" |dea: Normalize the critic’s score by subtracting a baseline
function (often a value function V(s))
" Provides more informative feedback:

= Decrease the probability of worse-than-average actions
" Increase the probability of better-than-average actions

" Helps to further reduce variance in policy gradient estimates
A™(s,a) = Q™(s,a) — V™(s)

I | -
5 i I |
A3 A4 A5 -

I A2 . A4 A5
A1 A2

W N =2 O =~ N W



Deep RL
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Value methods: DQN

" Deep Q-Network (DQN)

= Uses a deep neural network to approximate Q(s,a)
= —> Replaces the Q-table with a parameterized function for scalability

" The network takes state s as input, outputs Q-values for all actions a simultaneously

Convolution Convolution Fully connected Fully connected
w A s w

of | B /m

ot | /s L\
B-oeom -0 :o:

o | O

of] | E \m

¢

AR vy ]
[ BX BN BN BN BY BX B ~ €« ¥ £
HEBEEERERACRAREAR

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.



DQN (cont.)

" |Intuition: Use a deep neural network to approximate Q(s,a)

" [nstability arises in the learning process

= Samples {(s¢, a¢, S¢+1, 7¢) } are collected sequentially and do not satisfy the i.i.d.
assumption

" Frequent updates of Q(s,a) cause instability

" Solutions: Experience replay

= Store transitions e; = (S, s, S¢4+1,73) in a replay buffer D
Sample uniformly from D to reduce sample correlation

* Dual network architecture: Use an evaluation network and a target
network for improved stability

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Target network

* Target network Qg-(s, a)

* Maintains a copy of the Q-network with older parameters 6~

 Parameters 8~ are updated periodically (every C steps) to match the evaluation

network

= Loss Function (at iteration i)

2

Li(6) = Esqapsesarope-n |3 @t + 7 max Qo (ses1,@") — Qg (5, a)Y?]

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavuke

=+

—

p

=

=

oglu, Silver et al. (201

06



DQN training procedure

" Collect transitions using an e-greedy exploration policy

= Store {(s¢, ¢, S¢4+1,7+) } into the replay buffer
= Sample a minibatch of k transitions from the buffer
" Update networks:

= Compute the target using the sampled transitions
* Update the evaluation network Qg

* Every C steps, synchronize the target network Qg- with the evaluation
network

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Overestimation in Q-Learning

= Q-function overestimation
* The target value is computed as: Y¢ =1 TV rr:la,lx Qo (s¢+1,a’)

" The max operator leads to increasingly larger Q-values, potentially
exceeding the true value

= Cause of overestimation
{9251( Qo' (St+1,a’) = Qgr(S¢4q,arg HE}X Qo' (St+1,a"))

" The chosen action might be overestimated due to Q-function error



Double DQN

" Uses two separate networks for action selection and value
estimation, respectively.

DQN y: =1 +vQo(St+1,ar8 max Qo(St+1,a'))

“~

Double DQN Y: =1t + V¥

(5t+1,2rg max Qp (5e41,a")

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)



= Advantage function  A7(s

Q(s,a;0,a,p)

Q(s,a;0,a,p)

=V(s;0,B) +

Dueling DQN

Q™ (s,

,a) = Q"(s,a) — V(s)

a) = E[R;|s; = s,a; = a, ]

VT (s) = Eq-n(s) Q" (s, a)]

= Different forms of advantage aggregation

(A(s,a;0,a) — rr}szﬁﬂA(S a’;0,a))

=V(s;0,p) +

(A(s,a;0,a) — |A|z A(s,a’;0,a))




Policy network gradient

" For stochastic policies, the probability of selecting an action is

typically modeled using a softmax function:
ef@(sla)
Za, efG(S'a,)

mg(als) =

" fo(s,a)isascore function (e.g., logits) for the state-action pair
* Parameterized by 0, often realized via a neural network

" Gradient of the log-form

dlogmg(als) _ dfe (s, a) Z ofo s,a’ afg(s a'")
90 06 Z ,efe(S a’)

_Of(sa) o 0fo(s, a’)
~ 99 erme@lD | g



Policy network gradient (cont.)

" Gradient of the log-form

dlogmg(als) dfe(s, a) " dfe(s,a’)
0 90 a'~mp(@'ls) [T g9
" Gradient of the policy network
d](0) dlogmg(als)
0 ~Fr| a5 000 “)]

(0fg(s, ) fo(s, @)\ \n
=]En9 ( 669 _Ea'~n9(a’|s)[ 060 ])Q B(S,a)]

) \
1 1

Back propagation Back propagation




Comparison: DQN v.s. Policy gradient

= Q-Learning:
" Learns a Q-value function Qg (s, a) parameterized by 0

= QObjective: Minimize the TD error
" Policy gradient
" Learns a policy mg(a | s) directly, parameterized by 6

= Objective: Maximize the expected return directly
max J(0) = Ep,[Q7(s, )]

9] () dlogry (als) -
— e
Y 0+ aE,, PY: Q"9(s,a)

0 <0+«



Limitations of policy gradient methods

" Learning rate (step size) selection is challenging in policy gradient
algorithms

= Since the data distribution changes as the policy updates, a previously
good learning rate may become ineffective.

= A poor choice of step size can significantly degrade performance:

" Too large - policy diverges or collapses
" Too small = slow convergence or stagnation @

FTRER
IR



Optimization gap of the objective function

. ) . ](0) — IET~p9(‘c) [Ztytr(str at)]
" New policy 8" and old policy 6 J(8) = Eg -y sy [V (50)]

J(@") —Jj@6)=Jj'") - IIE':5>'0~p(so) [V (s0)]

= IET~p91(T) [2 ytATO(sq, a,)]
i t=0 *

Sampling
inconvenience A™0 (s, a) = QT0(s¢, ap) —V™ (s¢)



Importance sampling

A™0 (s;, a;)
70— 1(6) — Q70 (s,, a) V7 (s,)
= 1:~P 1(T) [2 ytAne (St at)]

= z IESt~p9’ (St) []Eat~7t9/(at |St) [ytAne (St' a’t)]]
t

- E E [77"9’(at|5t) tAms (s, a,)]]
st~Pg! (st) L a~mg(At|St) g (atlst) )4 t) At
t é h

Do, approximation Importance sampling



TRPO Policy Constraint

" Use KL divergence to constrain policy update magnitude:

mgr(aclse) ,
TS Y A™O (se, ap)]]

such that Eg, ., (s)[Dxe (”9’ (aclse) Il o (atlst))] S€

' < arg mgarlxz Esi~po(se) [IEat~7T9(at|St)[
t

" |[n practice: use penalized objective with KL divergence penalty instead
of hard constraint
Tgr(at|se)

/ tpm
0" « arg n}ga}x Z Es~pg(se) []Eat~n9(at|5t)[n9 (a¢|sg) AT (s adll

—A(Dg(myr(aclse) | mg(aelse)) — €)

= Update 6’ and 4 « A + a(Dgy (g (aclsy) Il mg(aslsy)) — €)



TRPO Drawbacks

Use KL divergence to constrain policy update magnitude:

mor(aelse) , -
sy (5]

such that E, g (s, [Dic (g1 (aclse) 1l g (acls,))] < e

0" « arg “};”,"‘2 Ese~po(so) [ Ear~mg(ar]sy)l
t

" |n practice: use penalized objective with KL divergence penalty instead
of hard constraint
Tgr(at|St)

/ tpm
0" « arg InBE,lX Z IESt"'pB(St) [IEat~ﬂe(at|St)[7t9 (at |St) 4 4 O(St’ at)]]
t

—A(Dg (mgr(aglse) Il mg(aglsy)) —€)

= Update 8’ and A « A + a(Dg (g (aclse) | mg(aglsy)) — €)

" High variance from importance weights
= Difficult to solve constrained optimization



Proximal Policy Optimization (PPO)

" Clipped Surrogate Objective

Tlg (at|3t) A

conservative —_ "
A | = Eg [rt (9>At]
g 14 (atlse)

policy iteration

LCPI (0) — Et [

LCLP(9) = E,|min(r,(6)A,, dlip(r:(8),1 —€,1 + €) 4, )]

A<O
JCLIP A>0

Construct the lower bound: LCLIP(9) < LCPI(Q)

_\ Equivalent at r=1: LELIP(9) = [CPI(g)

1L i
0 1 1+¢ LCLIP




PPO: improvement over TRPO

= 1.Clipped surrogate objective

Tlg (at|3t) A

conservative —_ "
A | = Eg [rt (H)At]
g 14 (atlse)

policy iteration

LEP1(9) = E, [

LCLP(9) = E,|min(r,(6)A,, dlip(r:(8),1 —€,1 + €) 4, )]
= ) .Generalized advantage estimation
Ap = =V(s) +r+yrga + -+ vy e + vy (sy)

= Use parallel actors to collect rollouts, compute advantage estimates,
and update parameters with minibatches.



PPO: improvement over TRPO

= 3. Adaptive penalty parameter

LKLPEN (g) — i, [nzc(f(ljj;)t) A, — BKL[mg (- Isp)|me (: |St>]]

= Adjust the penalty coefficient B dynamically:
= Compute the KLvalue d = E, {KL[ngold (- Isg)|mg (- |St)]J
" [fd<target/15>B<B/2
" [fd>targetx 1.5 > P& B x2

Note: Here, 1.5 and 2 are empirical parameters, and the algorithm performance is not very sensitive to them



