MAT8034: Machine Learning

Final Review

Fang Kong
https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

View based on tasks

= A simplistic view based on tasks

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Supervised learning

= Algorithms
" Linear regression
= |Logistic regression
= Generalized linear models
= Generative learning
= Kernel methods
= Deep learning

" Performance

= Generalization, regularization, model-selection

Unsupervised learning

= Algorithms
= K-means

= Expectation Maximization
= PCA
= |CA

Reinforcement learning

= MDP

= Algorithms: Value iteration, policy iteration, policy evaluation, policy extraction

= Bandits (exploration-exploitation trade-off)
= Algorithms: ETC, epsilon-greedy, UCB, TS

= RL
" Model-based

= Model-free:
= Direct estimation, TD-learning, Q-learning

= Policy-based: Policy gradient

= Function approximation
= Deep RL: value-based, policy-based

View based on the workflow

ldentify the task type
= Regression, classification, clustering, reduction, RL...
Determine a hypothesis class
" Linear function, GLM, kernel, neural network->label, log-odd, value function...
Define the objective function
= Maximum likelihood, empirical risk minimization
Optimize the objective function

= SGD, Newton’s; EM (construct lower bound), RL (sampling)

Evaluate the performance

" Generalization, regularization, model selection

Supervised Learning

Linear regression

Linear regression

= | MS

= Gradient descent

= Normal equation

= Justification for LMS
" Log likelihood

How to represent h?

= Simplest fit 5
350000 - "
@
300000 A
250000 A
e
200000 - - : .

8000 10000 12000 14000
lot

- h@ (x) - 80 + 91x1 + 023(:2
= \/ector notation?

10

How to learn the parameter?

= Least-square cost function

1 n . .
Jo = Eziﬂ(hg (x(l)) - y(l))z

11

Least Mean Square Algorithm

" Thus the update rule can be written as

4D = 00— 'S (ho(x) — y0) 5.
i=1

We write this in vector notation for j = 0,...,d as:

p(t+1) _ g(t) _ Z (he(xm) _ y(i)) ()
i=1

12

Batch & stochastic gradient descent

Consider the update rule g(t+1) =9 —)" (hg(X(i)) - y(i)) x{),

Repeat until converge i=1

A single update, we examine all data points
In some modern applications, n may be in the billions or trillions!
" E.g., we try to “predict” every word on the web

ldea: Sample a few points (maybe even just one!) to approximate
the gradient called Stochastic Gradient (SGD).

= SGD is the workhorse of modern ML, e.g., pytorch & tensorflow

13

5

X0 —)" (X0 —)

The matrix form

Tk
@

|y

X0 — ¢

- (z0)T =

(=™)76

" hp(zV) — y®

| ho(zt™) =y

14

Normal equation

" Hope to minimize J (@), find 8 such that Vj(8) = 0

VoI(6) = Vig(X0—5)7(X0-7)
Vo (X0)"X0 — (X0)Ty — 4" (X0) + 7 %)
Vo (67(XTX)0 — 7 (X6) — 77 (X0))

Vo (07 (X"X)0 — 2(X"9)"6)

N RN =N =

= (2X7X0 — 2X")

= X'X0- X"y

= (X"X)"'Xx"y.

Some useful facts:
alb = bla

V. 0Tz = b

V.rl Ax = 2Ax

15

A Justification for Least Squares?

We make an assumption (common in statistics) that the data are
generated according to some model (that may contain random
choices). That is,

v — gTx() 4 20).

Here, (/) is a random variable that captures “noise” that is,
unmodeled effects, measurement errors, etc.

Please keep in mind: this is just a model! As they say, all

models are wrong but some models are useful. This model
has been shockingly useful.

16

What do we expect of the noise?

What properties should we expect from (/)

Again, it's a model and () is a random variable:
» E[c()] = 0 - the noise is unbiased.

» The errors for different points are independent and identically
distributed (called, iid)

E[eel)] = E[eME[Y)] for i # .

E [(gmy] _ o2

Here o is some measure of how noisy the data are. Turns out,
this effectively defines the Gaussian or Normal distribution.

and

2

17

Likelihoods!

Intuition: among many distributions, pick the one that agrees
with the data the most (is most “likely”)

L(0) =p(y|X;0) Hp ()| (1)) iid assumption

. (X(g —))
oy
27 P 202

i—1 ¢

18

Log Likelihoods!

" For convenience, use the Log Likelihood
(0) = logL(0)

nq (y) — gT)2
— 1 _
og E > exp (=

f:l] ((4 — ng<¢))2)
= 0 exp [—
ey = V2o £ 202

n

1 1 1

= nlog

2o 02 24
1=1

" Finding a 0 that maximizes the log likelihood
= What happens?
= Equivalent to minimizing %Z(y“) — e’

i=1

— (y(i) _ ng(i))%

19

Logistic regression

20

Intuition of logistic regression

= Consider the odd: p/(1-p) € (0, +0)
" Consider the log odd:
" Logit(p) :=log p/(1-p) € (—o0, +0)

= Good properties:
" p->0, logit -> —o0; p->1, logit -> +o0
» Symmetry: Logit(p)=-Logit(1-p)

= Use linear model to approximate the logit: 6 "x ~ Logit(p)= log p/(1-p)
1

" p~ : = sigmoid(0 "x) = hg(x)

1+exp(-0Tx) "

21

Likelihood function

Let's write the Likelihood function. Recall:

P(y =1 x;0) =hs(x)
P(y =0 x;0) =1 — hy(x)

Then,

L(0) =P(y | X;0) = Hp | x; 6)
(i)

— H hg(x)y() 1 — hg(xD))1—Y exponents encode “if-then”

Taking logs to compute the log likelihood ¢(6) we have:

((0) = log L(6) = iy“) log hy(x\)) + (1 — y1)) log(1 — he(x1"))

22

Gradient ascent for log likelihood

23

f(x)

60

40

30

20|

10

-10

f(x)

60

Given f : R - R find 8 s.t. f(8

0

50

40

30

20

-10

Newton’s method

f(x)

60

50

40

30

20

4.5 5

24

Newton’s method

Suppose 0,, — 0,,,1 =

f(6n)—0 /
S = 1 (6,)

f(6n)
HTl o 9n+1 — A= fl (Hn)

So the updaterulein 1d 6 :=0 —

To maximizing the log likelihood?

f(0)
1'(6)

0:=40

25

Multi-class classification: Softmax function

® Define the softmax function softmax : R* — R* as

softmax(ty,...,t) =

~ exp(tl) -
22?21 exp(t;)

exp.(t k)
. Z;c: 1 exp(t;)

" Let (t1,...,tx) = (0{z,---,0, x)

Ply=1|z0)

Ply=k|x;0)

exp(6{ x)
Z";z 1 exp(e;r ‘,L')

= softmax(ty, - - ,tx) =

exp(6,)

» 2‘1;21 exp(Q;rx) a

(2.9)

26

GLM

27

GLM: Motivation

In the regression problem y|z;6 ~ N (u,0?)
In the classification problem vy|z;0 ~ Bernoulli(¢)

Whether these distributions can be uniformly represented?

If P has a a special form, then inference and learning come for free

28

The exponential family

= p(y;m) = b(y) exp(n' T(y) — a(n))

" y: data label (scalar)

" 77: natural parameter

= T(y): sufficient statistic

= b(y): base measure, depend on y, but not n (scalar)

= a(n): log partition function (scalar) 1=3"P(yin) = e > b(y)exp {n" T(y)}

— a(n) =log » _ b(y)exp {nT T(y)}

29

An observation

Notice that for a Gaussian with mean p we had

1
n=upu, T(y) =y, a(n) = 5772-

We observe something peculiar:
Oya(n) =n = p=Ely] and 87a(n) = 1 = 0 = var(y)

That is, derivatives of the log partition function is the expectation
and variance. Same for Bernoulli.

[Is this true in general?

30

GLM: Three assumptions/design choices

1. y | z; 0 ~ ExponentialFamily(n). Le., given z and 0, the distribution of
y follows some exponential family distribution, with parameter 7.

2. Given z, our goal is to predict the expected value of T'(y) given .
In most of our examples, we will have T'(y) = y, so this means we
would like the prediction h(x) output by our learned hypothesis h to
satisfy h(xz) = Ely|z]. (Note that this assumption is satisfied in the
choices for hg(x) for both logistic regression and linear regression. For
instance, in logistic regression, we had hy(z) = p(y = 1|x;0) =0 p(y =
Oz;0) +1- p(y = 1|z;0) = E[y|=; 6].)

3. The natural parameter n and the inputs z are related linearly: n = 67z. - _
(Or, if n is vector-valued, then n; = 0 x.)

31

Workflow of GLMs

= Model formulation

Model Parameter Natural Parameter Canonical
¢ : Bernoulli

07 x g .
0 — n —— u : Gaussian

A : Poisson

" Maximum log-likelihood

= Gradient ascent to optimize

max log p(y | x; 0)

p(t+1) —_ p(t) 4 (y(,-) ~ By (X(f))) ()

32

Generative learning

33

Discriminative and generative learning algorithms

" Discriminative learning algorithms
" Try to learn p(y|x)

" Generative learning algorithms
" Try to learn p(x|y) and also p(y)

= Example
" p(x|y = 1) models the distribution of elephants’ features
" p(x|y = 0) models the distribution of dogs’ features

34

Gaussian discriminant analysis

= Assume that p(x|y) is distributed according to a multivariate
Gaussian distribution

35

Multivariate Gaussian distribution

= d-dimension
= Mean vector u € R?

= Covariance matrix X € R%*? (symmetric, positive semi-definite)

p(z; p,) = (ZW)d/ilElm exp (—%(w —w)'E Nz~ u)) .

= | ¥ | denotes the determinant of the matrix X

= Expectation and covariance

BlX] = / zp(z; p, K)dz = p E[(Z — E[Z))(Z — E[Z]))"]

The GDA model

" Model p(x|y) using a multivariate normal distribution

y ~ Bernoulli(¢)
:1:|y =0 ~ N(,Lbo, Z)
.’13|y =1 ~ N(:U’la Z)

" Distribution parameters

ply) = ¢'(1—¢)"
p(zly=0) = (27r)d/12|2|1/2 5P (_;(5'7 — NO)TZ_l(x — NO))

paly=1) = s (5@ - w0 - m))

37

How to estimate the parameters?

" The parameters are @, 2, 1y and p; (Usually assume common X)
" The log-likelihood function for the joint distribution

U, po, p1,X) = log Hp(x("'), Yy ¢, o, pa,)

=1

= log | [p(=®1y™; o, 1, £)p(y";).

=1

38

Maximum likelihood

" Maximum likelihood yields the result (see the offline derivation)

6 = %Zl{y“) =1}

S, 1{y® = 0}at

Ho = n :
Zi:l 1{3/(2) = 0}
ey Wy =1
M1 = n :
Zi:1 1{3/(2) =1}

1, 7;
> = n Z(x() — ,uya))(x() — ,uy@))T-
i=1

Kernel Methods

40

LMS with high-dimensional features: Disadvantages

" Computationally expensive

" et ¢ (x) be the vector that contains all the P
: : Z1
monomials of x with degree < 3 T1Zs
= Dimension of ¢(x): d3 o(z) = | T3

= When d = 1000, 10°

= Can we avoid this? T

41

Any great form of 07

= With the GD, 0 can be represented as a linear combination
of the vectors ¢p(x)

" By induction
= At step 0, initialize 8 =0 =Y;0 - p(xV)
= Suppose some step, 8 = Y; 5; - p(xV)

" Then in the next step no | |
0:=60+a Z (¥ — 67 (z?)) (=)

= Z Bip(z") + o Z (" = 076(z")) ¢(=")

—Z Bi+a(y —9T¢(")) o(z?)

42

ldea: represent 0 by [

= Derive the update rule of 5
Bi =B+« (y(i) — 9T¢(m(i)))

0 =737 Bip(zD)

Pi =B+ (?J(i) - Z ﬂjﬁb(z(j))TMfU(i)))
j=1

= Denote the inner product of the two feature vectors as (qb(x(j)), cp(x(i)))

43

Can we accelerate computation?

" At each iteration, we need to compute

(p(xD), p(x)),vj, i € [n]

= Acceleration

" 1. It does not depend on iteration, we can compute it once before
starts

= 2. Computing the inner product does not necessarily require
computing qb(x(i)) (see the next page)

44

Computing (p(xV)), p(x1))

d
(¢(z), ¢(2)) =1+ vazzz + Z T;ixj2i25 + Z LiLjX k2525 %k
i=1

i,je{1,...,d} ij,ke{l,....d}
d d 4 d 3
=1+ Z T;2; + (Z :czzz> + (Z :czzz)
=1 1=1 1=1

= Above all, the computation only requires O (d)

(5.9)

45

The final algorithm

] Update ﬁ 1. Compute all the values K(z® 20) & (¢(z®), #(z))) using equa-
tion (5.9) for all ¢, j € {1,...,n}. Set B :=0.

2. Loop:

Vie{l,...,n},B; =06+« (y(i) — zn:ﬂjK(ac(i),:c(j))) (5.11)
j=1

Or in vector notation, letting K be the n X n matrix with K;; =
K(z®,z()), we have

B:=pB+a(y— Kp)

= Compute the prediction

Z Bid((z) Z B.K (Z)

46

Deep Learning

47

Computation

= Single-layer function) fala) = 060 + 11 + 6:x7)
X
" fo(x) = a(0y + 01x1 + 03x,) <N
(\,‘w /) N 3
x %

" Multi-layer function
" hy(x) =0(0y + O1x; + 0,x5)

" h,(x) =0d(0; + 0,x1 + O5x5) Q fo ()
" fo(x) = 0(6 + 6,hy + O3h;) ha () | Qi) (\W ha ()
5D

Non-linear activation functions

= Adding non-linearity allows the network to learn and represent
complex patterns in the data

= Common non-linear activation functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelU)
Q(Z) ol2) 0(2)
0.8} '@ | ' 05| 9@ | | 4 9')
06} 3}
0
0.4} 21
0.2} e 1]
0 4 ’ -1 : 0 -
-5 0 5 -5 0 5 -5 0 5
1 7= 8%
o — o z)=max (0, z
@)= == 0@) = 5= o(z) (0,)
@)= 0@ (1-0(2) ()= 1-0(@)? ') =10’ otheres
o' (z)=0(2) o(z) o \z)= 0(2) o ~ o, otherwise

[source: MIT 6.5191 introtodeeplearning.com]

Universal approximation theorem

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

ni(x) = Relu(—5x —7.7)
n2(x) = Relu(—1.2x — 1.3)
na(x) = Relu(1.2x + 1)
ng(x) = Relu(1.2x — .2)
ns(x) = Relu(2x — 1.1)
ne(x) = Relu(5x — 5)

Z(x) = —ny(x) — nolx) — na(x)

+nql(x) + ns(x) + ng(x)

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators."
Neural networks 2.5 (1989): 359-366

Connection to the kernel methods

= Kernel methods
" Design the non-linear feature map function
" The performance significantly depends on the choice of feature map

* Feature engineering: process of choosing the feature maps

" Neural network

= Automatically learn the right feature map —

= Requires often less feature engineering —

Feed forward vs. Backpropagation

Compare outputs with correct
Outout unit é 0 v, =1(z) answer to get error derl\':z_tlves
utput units E_
Z = z Wi Vi l l a, v =1
e etz dE _ oE ay,
0z, ay, 0z,
Y = f(zk) £ = y £
) 1Z
2 = 2 Wik Y, Yk leout <
/€ H1 oE _ dE Vi
(')Zk ("yk (')Zk (’E B ()E
y]:f(zj) .) = 2 W}k?
Vi keHz2 %%
W, Zj = E Wi Xi oOF : 9E 3y,
I € Input Wi dz; dy; 9z
Input units

Make a prediction

u,J(lrl net(ll) hgl)

inputs 2 (2) outputs labels

Input layer hidden layer output layer
Two-layer feedforward neural network

Feed-forward prediction:

(1 1)
AV = 0y (netl?) = fa) (Y wi z,m) Yk = f(o)(net)) = Zu,k)h(
= > hgl) » Yk

where et =Y ulVa, net® = 3" wDhl)

J

Backpropagation

wj(lrl netgl) h(ll)

inputs outputs labels

1

L2

Input layer

hidden layer

output layer

Two-layer feedforward neural network

Feed-forward prediction:

Assume all the activation functions are sigmoid

Error function E = 1 3, (yx — di)?
g_ﬁ = Y — di
iﬁ%::ﬂmhwﬁ?ﬂén==m(1—ywhy)
= 32 = (e — di)ye(1 —)b

(2) (2) _

= wi) — wiy — nys — i)k — ye)h)

B = fay (netl?) = fy (O wihem) vk = Fiay(meti?) = fio (D

m J

w

@),)
kM

.....

(1) '
h;

net® = 3w
J

»
>

)

Y

Backpropagation (cont.)

inputs outputs labels e Error function E = § 3, (yx — di)?
(2) OE __
- " ® oy Yk T di
j
9_' Q e Dy = (1 — y)wi?)
J
2)

n oh” (1) (1) (1)
9&, O di 2oy —) (rets?) 2m = 1" (1= 1V) @

= 9% = A (1 - h§-”) >k w;(fj) (Y& — i)Yk (1 — Y)Tm

J,m

Input layer hidden layer output layer

2
= J(lr)n < w(l) h§-1) (1 - h§-”) Dk wl(c,;'(yk — di)yk(l — Yk)Tm

Two-layer feedforward neural network

Feed-forward prediction:

h“) = f()(net)) f()(Z (l)l‘m) y;l— f(o (net) f(o (Z](\I‘J)hgl))

m J
7= (21,0000) > KV > Uk

v[here nett) =" wll) 2., nety) =3 wi b\

J

Generalization

56

Intuition

= Recall in previous classes

* We typically learn a model hg by minimizing the training loss/error

1 . N 2
‘ Jo = 2504 (o (x®) = y©)
= This is not the ultimate goal

" The ultimate goal

= Sample a test data from the test distribution D
= Measure the model’s error on the test data (test loss/error)

L(0) = E(w,y)wD[(y — he(x))z]
= Can be approximated by the average error on many sampled test examples

Challenges

" The test examples are unseen

= Even though the training set is sampled from the same distribution D, it can not
guaranteed that the test error is close to the training error

=" Minimizing training error may not lead to a small test error
= Important concepts

= Overfitting: the model predicts accurately on the training dataset but doesn’t
generalize well to other test examples

= Underfitting: the training error is relatively large (typically the test error is also
relatively large)

" How the test error is influenced by the learning procedure,
especially the choice of model parameterizations?

How about fitting a linear model?

1.5 — 1.5
x training data test data
best fit linear model % —— Dbest fit linear model
1.0
>
0.5 -
0.0 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 8.2: The best fit linear model has large training and test errors.

®" The true relationship between y and x is not linear
" Any linear model is far away from the true function
" The training error is large, underfitting

How about fitting a linear model? (cont’d)

0 fitting linear models on a large datast 1 ;itting linear models on a noiseless dataset

x training data x X 2 ' x training data
—— ground truth h* B
{.— best fit linear model

—— ground truth h™
1.04 — bestfit linear model

>
0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 8.3: The best fit linear Figure 8.4: The best fit linear
model on a much larger dataset model on a noiseless dataset also
still has a large training error. has a large training/test error.

* Fundamental bottleneck: linear model family’s inability to capture the
structure in the data

* Define model bias: the test error even if we were to fit it to a very (say,
infinitely) large training dataset

How about a 5th-degree polynomial?

1.5 — 1.5
x training data test data

—— best fit 5-th degree model —— ground truth h*
1.0 — best fit 5-th degree model

1.0

>
0.5

>
0.5+

0.0 0.0+

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 8.5: Best fit 5-th degree polynomial has zero training error, but still
has a large test error and does not recover the the ground truth. This is a
classic situation of overfitting.

Predict well on the training set, does not work well on test examples

How about a 5th-degree polynomial? (cont’d)

fitting 5-th degree model on large dataset
1.5

~ training data B
—— best fit 5-th degree model 4
1.04 — ground truth h” P

0.0 0.2 0.4 0.6 0.8 1.0

= When the training set becomes huge, the model recovers the ground-
truth

How about a 5th-degree polynomial? (cont’d)

fitting 5-th degree model on different datasets

1.5 1.5 [1.5

x training data
—— best fit 5-th degree model

% training data x training data

—— best fit 5-th degree model (\

—— best fit 5-th degree model

1.0 1.0 1.0

>
0.51

> >
0.54 0.54

0.0 0.0 0.0 1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.7: The best fit 5-th degree models on three different datasets gen-
erated from the same distribution behave quite differently, suggesting the
existence of a large variance.

= Failure: fitting patterns in the data that happened to be present in the
small, finite training set (NOT the real relationship between x and y)

" Define variance: the amount of variations across models learnt on multiple
different training datasets (drawn from the same underlying distribution)

Bias-variance trade-off

/—-— Optimal Tradeoff Test Error (= Bias? +Variance)

Variance

Error

Model Complexity

Figure 8.8: An illustration of the typical bias-variance tradeoft.

Problem setting: regression

= Draw a training dataset S = {z(®,y(®}? . such that y® = h*(z(?) 4 £
where £ € N(0,0?).

" Train a model on the dataset S, denoted by hg.

= Take a test example (z,y) such that y = h*(z) + £ where £ ~ N(0, 02),
and measure the expected test error (averaged over the random draw of
the training set S and the randomness of £

MSE(z) = Es¢[(y — hs(z))’] (8.2)

Decomposition

" MSE(z) = E[(y — hs(2))"] = E[(§ + (h*(z) — hs(@)))"]

[1 + E[(h*(z) — hs(z))]
o? + E[(h*(z) — hs(x))’]

= Define hgyq(x) = Eg[(hs(x))]

* The model obtained by drawing an infinite number of datasets, training
on them, and averaging their predictions on x

" MSE(z) = o + E[(h*(z) — hg(x))?]
= 0+ (*(2) — hasg(@))? + El(havg — hs(@))”

= 0 +(W(®) — hay(2))’ +var(hs(z))

N
. A 3
A bi as2 = varlance

unavoidable

Model-wise double descent

"= Recent works demonstrated that the test error can present a
“double descent” phenomenon in a range of machine learning
models including linear models and deep neural networks

classical regime: modern regime:

bias-variance tradeoff over-parameterization
_A— A

typically when # parameters
is sufficient to fit the data

test error

\lf
|
|
|
I
|
|
|
|
|
|
|
|
I
I
|
|
I

parameters

Sample complexity bounds

68

Problem setting

To simplify, consider the classification problem with y € {0,1}
Training set § = {(xi,yi); i =1,2,...,n}, drawn iid from D

For hypothesis h, define training error (empirical risk/error)
1 & | .
A(h) — (%) (%)
() = Sk #4°)

Define the generalization error e(h) = Py, ,~p(h(z) # y)

One of PAC assumption: training
nd testing set are from the same D

Theorem of generalization error

= Theorem. Let |H| =k, and let any n,d be fixed. Then with probability at
least 1 — d, we have that

e(h) < (%17216 > + 2\/— log —

= Explanation of bias/variance

= |f we switch to a larger function class H' 2 H
" The first term decreases: lower bias
* The second term increases as k increases: higher variance

Regularization

71

Regularization

" Meaning of regularization

= Adding an additional term to control the model complexity and prevent
overfitting

T5(0) = J(0) + AR(6)

" /(O): the original loss, e.g., MSE
" R(60): the regularizer, typically non-negative

= 1 > 0: regularization parameter

Model selection

73

Solution 1: Select the one with the minimum training loss?

" Given the training set S
1. Train each model M, on S, to get some hypothesis h;.
2. Pick the hypotheses with the smallest training error.

" What'’s the problem?

" Lower training error prefers complex models
" These models usually overfits

Solution 2: Hold-out cross validation

Split the training set S
" S = Strqin(usually 70%) + S, (usually 30%)
" Train each model M; on S;,.4;, only, to get some hypothesis h;
= Evaluate h; on S.,,, denote the error as £s., (hi) (validation error)
= Pick the hypothesis with the smallest validation error

The CV set plays the role of testing set
Evaluate the model in terms of approximate generalization error

Avoid overfitting

Improvement: k-fold cross validation

m 1. Randomly split S into k disjoint subsets of m/k training examples each.
Lets call these subsets 5, .. ., Sk.

2. For each model M;, we evaluate it as follows:

For j=1,...,k
Train the model M; on S;U---US;_;US;;1U--- S (i.e., train
on all the data except S;) to get some hypothesis h;;.
Test the hypothesis h;; on S}, to get &g, (hy;).
The estimated generalization error of model M; is then calculated
as the average of the €g,(h;;)’s (averaged over j).

3. Pick the model M; with the lowest estimated generalization error, and
retrain that model on the entire training set S. The resulting hypothesis
is then output as our final answer.

= Typical choice: k=10

Frequentist V.S. Bayesian

" Consider 8 as the model parameter

" Frequentist view
= § is constant-valued but unknown
= We need to estimate this parameter, such as MLE
0 — D ,.®. g}
MLE = arg mgXHp(y z%); 6)
= Bayesian review

" @ is arandom variable with unknown value

= We can specify a prior distribution p(6) on 6 that expresses our “prior
beliefs” about the parameters

Bayesian view

= Given a training set S = {(z®, y®)}~
" Compute the posterior of 6
p(S10)p(0)
0|S) =
p(9]5) 2(S)
(ITi=, p(y]21, 0)) p(6)
Jo ULz, p(y @]z, 0)p(0)) dO

" To predict the label of a new data x

p(ylz, S) = /ep(ylfﬂﬁ)p(ﬂs)d@ Ely|z,S] = /yp(ylwas)dy

Maximum a posteriori (MAP)

. . L (SIO)w(6)
= Approximate the posterior distribution for 8 |09 = =5
: . . (T, p@9129,6)) p(6)
" Use single point estimate = (T, p@12®, 0)p(6)) db
Oniap = arg mapr(y(i)h:(i), 0)p(0)
‘ 1=1

Additional term compared with MLE

" The prior p(0) is usually assumed to be 6 ~ A(0,72])
" Parameters with smaller norm are more preferred than MLE

" | ess susceptible to overfitting

Unsupervised Learning

80

K-means

81

The k-means clustering algorithm

= 1. Initialize cluster centroids ., s, . . ., ux € R? randomly.
2. Repeat until convergence: {

For every 1, set | |
e := argmin |z — ;]
j

For each 7, set

b T e =)t
’ Z?:l 1{6(2) =7}

Convergence analysis (cont’d)

= Define the distortion function

J(e,m) =) e — powl|?
1=

= K-means is exactly coordinate descent on J
" | must monotonically decrease, and the value of] must converge

EM

84

Intuition

" Recall that in unsupervised learning, we are given the training set

without labels
(2O, . ™)

" We can assume these data are from different underlying classes
=12, ..,k

= Each class is modeled by a Gaussian N (u;, %)

" The class label follows a multinomial distribution

* Each data can only belong to one of these classes
= Distribution parameter ¢ with ¢; = 0 and Z]- $; =1

Mixture of gaussian models

= Each data x! corresponds to a (latent) class label z*
= z'~Multinomial(¢), with ¢; = 0and X, ¢; = 1

" P(z' =) = ¢,
" x'|z' =]~ Ny, %)

Maximum likelihood

" |og-likelihood
U, 1, %) = Z log p(z”; ¢, 1, %)

Zlog Z p(z@|29; p, D)p(2?; ¢)

2(1)=1

m Zero the derivatives of this formula, but challenging to find the
closed-form solution

Relaxation: If we know the class label

" The log-likelihood becomes

¢, 1, %) =) logp(z?|29; i, %) + log p(217; ¢)

=1

How to estimate the parameters?

= The parameters are @, %, Lo and p; (Usually assume common %)
* The log-likelihood function for the joint distribution

U, po; p1,X) = log | p(e®,y®; ¢, o, p1, X)

= log | [p(=®1y"?; o, pr, £)p(y™; ¢).

Lecture 5: GDA

lterative algorithm to update z'

" Repeat until converge

= Guess the value of z!: compute the posterior probability

p(z¥]2 = j; u, D)p(2" = j; ¢)

(z) _ (i) __ .CC(Z)
= P =gl o X) = S, p(x®@]20 = 1; pu, D)p(2® = 1; ¢)

» Based on z!, use maximum likelihood to estimate parameters

lterative algorithm to update z'

" Repeat until converge

= Guess the value of z!: compute the posterior probability

» Based on z!, use maximum likelihood to estimate parameters

l ~—
o = > ouf,
=1

7: .
Z:‘L:l wj(-)x(z) Comparison
Hi = N, with existing
Zn ’LU(-Z) forms?
1=1 "7y '

Expectation-Maximization

" Repeat until converge

= Guess the value of z': compute the posterior probability DI

= Based on z!, use maximum likelihood to estimate parameters Step M

General EM: Setting

= Recall we have the training set {z®),..., z(™}
= We have a latent variable model p(z, z; 0)

" Hope to maximize the likelihood

> logp(z1; 6)
1=1

£(0)

Z log Zp(a:(i), 2. 0) « | p(z;0) =) p(z,206)
i=1 :

z(1)

Intuition

" Directly optimizing the likelihood is infeasible

" How about optimizing the lower bound of the likelihood?

= Construct a lower bound —Step E

= Optimizing the lower bound — Step M

Lower bound of the likelihood

" Hope to derive the lower bound for
log p(x;0) logprz

]
—
o
o3
g
VR
3
R
D
N—r"

Q is any
distribution on z

z (9) with Q(z) = 0 and
D\T, 2, 2:0(2)=1
— 1ogZQ(z) Q(z)/

Jensen’s inequality «=——— Z Z Q(Z) 10g

" log p(x; 0)

Choice of Q (cont’d)

" Hope the inequality hold with equality

How?

= Recall that in the Jensen’s inequality, the equality holds when X is
a constant

= To make p(g(z;)O) be a constant, let Q(2) x p(x, z;0)
- - p(z, 2;0)
= Since)., 0(z) = 1, it follows that Q(z) = S (7. 2:0)
_ plz,%0)
-~ p(z;0)

= p(z|z;0)

Verify the equality with Q(2) = p(z|z;0)

. p(x, z;0) p(x, z;0)
EZ:Q(Z) log =773 Zp 2|; 0) log © (z|x %
,0)p(@

Evidence
lower bound

(EL80) =Y p(z|z;0)logp(; 6)
= logp(z;0) Y _plz|z;0)

= log p(z; 0) (because) p(z|z;0) =1)

EM algorithm procedure

" Foundation
VQ,0,z, logp(xz;0) > ELBO(z;Q,0)
" Procedure of EM
= Setting Q(z) = p(z|x; ©) so that ELBO(x; Q, 8) = log p(x; 9)
= Maximizing ELBO(x; Q, 6) w.r.t 6 while fixing the choice of Q

Formal procedure of EM

Repeat until convergence {

(E-step) For each 1, set
Qi(2%) := p(2?]2;9).

(M-step) Set

0 —argmaXZELBO (29;Qs,0)

(z®, 2,)
. (z) :C y 207
= argmax E E Qi(z log E0)

) z()

Convergence analysis

= Objective: prove £() < £(1+1)

= Proof o
£(0“V) > > "ELBO(z®; Qi 0(+V)

/ 1=1
> "ELBO(z; @[, 6%
2

~=H

Jensen’s inequality

Updating rule

g(t))

Selection of Q

EM=alternating maximization on ELBO(Q, 6)

= Define ELBO(Q, 9)

i i p(x(i)7 Z(i)S 9)
ELBO(Q,) ZELBO .0,)—S:S:Qi(z())log 0.

[/ z(z)

" E step: maximizes ELBO(Q, 0) with respect to Q
= M step: maximizes ELBO(Q, ©) with respect to 6

Hint: show that
ELBO(z;Q,0) = Y, Q(z)log B&22
=log p(z) — Dkr(Q||p2z)

PCA

101

Which basis to select?

Xy (enjoyment)
X
X

x; (skill)

" The direction on which the data approximately lies

Intuition

" The data has natural "spread" in some directions more than
others

" The major axis is the direction where data varies the most

" |f we project data onto this axis, we retain the most information
(variance)

Example

Data

Selection 1

Selection 2

Mathematical Formulation

= The length of the projection of x ontouis x'u

" Maximizing the variance of the projections is equivalent to
maximize

lzn: 07) Z“T)07,
L =1

_ 1 = (@) ()T

Solution

s We want to maximize u! Ju

T

Subjectto:u'u =1

Lagrangian:
L(u,)) =u'Zu - A(ulu-1)

Set gradient to O:

8—£:O:>Eu:)\u
ou

" The objective becomes finding the principal eigenvector of X

Extension to larger dimension

If we wish to project our data into a k-dimensional subspace (k < d)

Choose to be the top k eigenvectors of X

Due to that X is symmetric, u;’s will be orthogonal to each other

u;’s now form a new orthogonal basis for the data

Obtain new, low-dimension features

= Represent the data in the new basis

) = c R*

" PCAis also referred to as a dimensionality reduction algorithm

" The vectors u4, ..., u; are called the first k principal components
of the data

ICA

109

Motivation

» Consider the cocktail party problem
* d speakers are talking simultaneously in a room
* Place d microphones at different locations

* Each microphone records a different combination of the speakers’
voices

" Can we recover the original speech signals of each speaker?

Problem formulation

= Source s € R?

= Observation x € R?

= Model the observation and source

r = As

= Ais the mixing matrix

Problem formulation (cont’d)

" Now we have multiple observations

{2®:5=1,...,n}
» The i-the data satisfies (9 = As(®

® ||lustration

. xji is the acoustic reading recorded by microphone j at time |

. Sji is the sound that speaker j was uttering at time i

Objective

" Given observation x', can we recover the sources?

" How?
Unmixing
s s = A 1y = Wx matrix
- fwf{ -
= W= 5 then s; = W}-Tx‘
_ wg .

Maximum likelihood

" Construct a joint distribution of the sources

p(s) = Hps(sj) Imply

independence

» Recall that the observation follows x = As, s = A~ 1x = Wx

" What's the probability of x? d
- px(x) — pS(Wx)IWl? | > p(a:) — HpS(w;rx) ' |W|
j=1

How to specify a density for s?
Cannot be gaussian

Selecting Sigmoid

9(2)

" | og-likelihood becomes

Z (Zlogg T g0 —|—10g|W|) |

1

g(z)= 1 +e72

g'(z)= g(z)(1-g(2))

" Using stochastic gradient ascent to optimize

Reinforcement Learning

116

MDP

117

Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and s is a
acting optimally state
s (s, a)is a
" The value (utility) of a g-state (s,a): P < g-state
Q’(s,a) = expected utility starting out o N
having taken action a from state s and 58,5 (s,a,8") is a
, transition

(thereafter) acting optimally

=" The optimal policy:
n'(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

The Bellman Equations

= Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values 7

V*(s) = max Q*(s, a)

Q*(s,a) =} T(s,a,5) {R(S, a,s’) + ’yV*(s’)} o

V*(s) = mO?XZT(S,a, s") {R(s,a, s") + ny*(s')}

" These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Convergence

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V| and V,,1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

= That last layer is at best all Ryjax

= |tisat worst Ry / \ /

= But everything is discounted by yk that far out
= So V, and V,,; are at most y* max|R| different
= So as kincreases, the values converge

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo(s) =0 ,s;”%f(s),s’
.

ka—l—l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + kaW(S’)]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?

=" |t’s not obvious!

We need to do a mini-expectimax (one step)

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values: WW
ANV
* How should we act? v‘.}‘
= Completely trivial to decide! e °'89 00

" |mportant lesson: actions are easier to select from g-values than values!

Recap: Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vig1(s) <= max > T(s,a,5') |R(s,a,s") + v V(s

S

* Problem 1: It’s slow — O(S2A) per iteration

" Problem 2: The “arg max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration (Pl)

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vit 1 (s) < Y. T(s,mi(s),s') |R(s,mi(s),s") + v V(s

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + ’yVWi(S/)}

S

Convergence of Pl

= 1. Improvement: Does each policy improvement step produce a better policy?

= 2. Convergence: Does Pl converge to an optimal policy?

Bandits

129

Explore-then-commit (ETC)

* There are K = 2 arms (choices/plans/...)

* Suppose

* Uy > U
* A=y — Uy [A/B testing]

e

e Explore-then-commit (ETC) algorithm

* Select each arm h times b rounds
* Find the empirically best arm A for a,
* Choose A; = A for all remaining rounds

T — 2h rounds
for the better
performed one

Explore-then-commit (cont.)

h rounds

* Regret analysis: for a,

T
Reg(T) =T - — E [z Sample mean
g(T) U1 t:1ll,4t/(.
=hA+ (T —2h) - A-P(1 < {i;
= hA + (T — 2h) - A - P((fp — pp) — (la—p1) > A)

hA?
<hA+T-A- exp| — 2 » Hoeffding’s inequality

Exploration Exploitation

logT 2
<0 (Oi)\[Choose h = [:—Zlog (%)] }

o Reg(T) — .Q(TA) ifh =100 mknowledge of A }

* Reg(T) =Q(TA)ifh=T/10

60

Expected regret

50

T — 2h rounds
for the better
performed one

0 100 200 300 400

Only with the best choice of h
the regret would be smallest

131

Upper confidence bound (UCB)

* With high probability = 1 — § 8y Hoeffding’s inequality |
A logl/6 log1/6 °
A [A i T A 7 o e
/ \]\ a\ J
/_ - Arm1 Arm2
Sample mean Number of selections of q;

* Optimism: Believe arms have higher rewards, encourage exploration
* The UCB value represents the reward estimates

Upper confidence bound (UCB)]

* For each round t, select the arm

\
~ log1/6
A(t) € argmax e A + >

IREICH
Exploitation Exploration 132

Upper confidence bound (UCB) (cont.)

* Assume arm a, is the best arm

* If sub-optimal arm q; is selected . I
* w/ high probability o z N
iy < UCB, < UCB; < p; +2 [28210 ® True mean
Tj(t) Arm1 Arm 2

. log1/é6 L o
= 2 / 0 = Ajr= g — U

log 1/6)

e = T;(t) < 0(
]() A?Twadaptive totimet }
* By choosing 06 = 1/T, cumulative regret:
A= minj,, 4 }

logT _ |
0 2 _ A2 . Aj = O(Klog T/A) Without knowing A
J#1 j

133

RL

134

Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution

2. Learn values from experiences, use to make decisions
a. Direct evaluation
b. Temporal difference learning

c. Q-learning

3. Optimize the policy directly

Model-Based Learning

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Directly estimate each entry in 7(s,a,s’) from counts
= Discover each R(s,a,s’) when we experience the transition

= Step 2: Solve the learned MDP

= Use, e.g., value or policy iteration, as before

Basic idea of model-free methods

" To approximate expectations with respect to a distribution, you
can either
" Estimate the distribution from samples, compute an expectation

" Or, bypass the distribution and estimate the expectation from samples
directly

Direct evaluation

" Goal: Estimate V7(s), i.e., expected total discounted
reward from s onwards

= |dea:
= Use returns, the actual sums of discounted rewards from s

= Average over multiple trials and visits to s

* This is called direct evaluation (or direct utility
estimation)

Problems with Direct Estimation

= What'’s good about direct estimation? Output Values

" |t's easy to understand

" |t doesn’t require any knowledge of T and R

" |t converges to the right answer in the limit

= What's bad about it?
* Each state must be learned separately (fixable)

" |tignores information about state connections

If Band E both go to C
under this policy, how can
their values be different?

= So, it takes a long time to learn

E.g., B=at home, study hard
E=at library, study hard
C=know material, go to exam

Temporal Difference Learning

" Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") +~4V™(s)
Update to V(s): VT(s) «+ (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) <+ V™(s) + a(sample — V™ (s))

Example: TD Value Estimation

. /
Experience transition i: (s;, a;, S;,7;).

Compute sampled value “target”: r; + yV™(s;).

Compute “TD error”: §; = (ri +)/V”(Sl-')) —VT(s;).

Update: V™ (s;) += a; - 6;.

V(s)

0

-2

9

-
B, east, C, -1

C, east, D, -1

% D, exit, X, +10)

-
B, east, C, -1

C, east, D, -1

% D, exit, X, +10)

4)
E, north, C, -1
C,east, D, -1

10

M{O[O|T|>]|n

8

i|s a s'"| r | r+yV™(s’) V™ (s))
1| B | east C | -1 -1+0 0 -1
2| C| east D | -1 -1+0 0 -1
31D exit -1 10 10+ 0 0 +10
4| B east C | -1 -1+ -1 -1 -1
5| C | east D | -1 -1+ 10 -1 +10
6| D exit -1 10 10+ 0 10 0
71 E| north | C | -1 -1+9 0 +8

] +
\D, exit, X, 10)

4)
E, north, C, -1
C, east, A, -1

% A, exit, X -10)

Problems with TD Value Learning

= Model-free policy evaluation! & &

= Bellman updates with running sample mean! & &

S

AANAANA AANAA LA AN A

» Need the transition model to improve the policy!

Q-learning as approximate Q-iteration

Recall the definition of Q values:

= OQ°(s,a) = expected return from doing a in s and then behaving optimally
thereafter; and 7' (s) = max,Q’(s,a)

Bellman equation for Q values:

" Q*(s,a) = 2y T(s,0,5')[R(s,a,s") + y max, Q*(s",a’) |
Approximate Bellman update for Q values:

" Q(s,a) « (1-a)-Qfs,a) + a-[R(s,a,s") +ymax,Q(s’,a’)]

We obtain a policy from learned Q(s,a), with no model!
= (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)

Exploration vs. Exploitation

b7 7

AN
Srennc!

L £T0
G2

Exploration method 1: e-greedy

= ¢-greedy exploration
" Every time step, flip a biased coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy /(

" Properties of e-greedy exploration
" Every s,a pair is tried infinitely often
" Does a lot of stupid things
= Jumping off a cliff lots of times to make sure it hurts

= Keeps doing stupid things for ever
" Decay € towards O

Method 2: Optimistic Exploration Functions

Exploration functions implement this tradeoff

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g., f(u,n) =u + k/\/n

Regular Q-update:)
" Q(s,a) « (1-a) - Q(s,a) + a - [R(s,a,5") +y max,Q(s’,a)]
Modified Q-update:

" Q(s,a) « (1-a)-Qfs,a) + a-[R(s,a,s’) +y max, f(Q(s’,a’),n(s’,a’))]

Note: this propagates the “bonus” back to states that lead to
unknown states as well!

Feature-Based Representations

= Solution: describe a state using a vector of
features

= Features are functions from states to real
numbers (often 0/1) that capture important
properties of the state

= Example features:

= Distance to closest ghost f..;
Distance to closest dot
Number of ghosts
1 / (distance to closest dot) ;o7
= |s Pacman in a tunnel? (0/1)
- etc.

= Can also describe a g-state (s, a) with features
(e.g., action moves closer to food)

Linear Value Functions

= We can express V or Q (approximately) as weighted linear
functions of feature values:

" Vg(s) = 0,f(s) + O,F,(s) + ... + 0. (s)
" (Jg(s,a) = 0,f,(s,a) + 0,1,(s,a) + ... + 0,f (s,a)

= Advantage: our experience is summed up in a few powerful numbers
= Can compress a value function for chess (10* states) down to about 30 weights!

= Disadvantage: states may share features but have very different expected utility!

SGD for Linear Value Functions

" Goal: Find parameter vector 6 that minimizes the mean squared
error between the true and approximate value function

1
J(6) = Eql5 (V"(s) = Vo(s))']

" Stochastic gradient descent:

0/ (6)
a0

=0+ a(V”(s) — Vy (S))

00—«

dVp(s)
a6

Temporal-Difference (TD) Learning Objective

0 <0+ a(V”(s) — Vg (s))x(s)

" InTD learning, 1:4q4 + ¥V (S¢41) is a data sample for the
target

= Apply supervised learning on "training data":
(s1,72 + YVo(52)), (52,13 + ¥V (S3)), e, (ST, 1)

" For each data sample, update

0 <0+ “(rt+1 + ¥Vo(St+1) — Vo (5))x(5t)

Q-Value Function Approximation
" Approximate the action-value function:
QB(S' a) = Qn(si a)
" Objective: Minimize the mean squared error:
1 2
J(0) = By |5 (07(s5,0) — Qg 5, @))?]

" Stochastic Gradient Descent on a single sample

0Qp(s,a)

0«0+ a(rt+1 +YQo(St+1, A1) — Qo (s, a)) 90

= Simplest version:
= Start with initial policy m(s) that assigns probability to each action

0.3
0.2
0.1

0

Policy Gradient

= Sample actions according to policy T

= Update policy:

= |f an episode led to high utility, make sampled actions more likely

= |f an episode led to low utility, make sampled actions less likely

A1 A2 A3 A4 A5

0.4
0.3
0.2
0.1

0

A1 A2 A3 A4 A5

0.4
0.3
0.2
0.1

0

A1

A2

A3 A4 A5

Policy Gradient in a Single-Step MDP

" Consider a simple single-step Markov Decision Process (MDP)
= The initial state is drawn from a distribution: s ~ d(s)

" The process terminates after one action, yielding a reward 7,

" Expected Value of the Policy

J©) = Egylr] =) d(s)) mp(als)rg

SES acA

a](9) z ()zaﬂe(GIS)

SES acA

Likelihood Ratio Trick

» Use the identity: 97me(als) _ 1 0dmg(als)
y a0~ el S T a6
B dlogmg(als)
= mg(als) EY:

" The gradient of the expected return can be written as:

J©) = E,lrl =) d(s)) 74 @l

5 () sEéS‘ (|a§A
] 6 Ttg(a|S
Ed()Z Tsa
SES AEA cesssasresevenc '_____I
dlogmy (als :
zd(S)zne(aIS) 870 (al) | Can be
SES acA ""---“----------—-' approximated by

dlogmg(als) sampling s from
— LErg [PY:) sa] d(S) and a from g

Extension to Multi-step MDP

" Replace the instantaneous reward r(s,a) with the Q-value

0/(6) _ . |dlogme(als)
00 e 00

Q™0(s,a)

Richard Sutton’s Reinforcement Learning: An Introduction (Chapter 13)

REINFORCE Algorithm

= Use the cumulative reward G, as an estimator for Q™¢(s, a)

" initialize 6 arbitrarily
for each episode {s{,a,ry,...,ST_1,aT-1,I'T}~Tg dO
for t=1 to T—1 do

0 <0+ a%logne (a;|s;)Gy
end for

end for
return @

Actor-Critic

" |ntuition

= REINFORCE estimates the policy gradient using Monte Carlo returns
G; to approximate Q(s¢, a;)

= Why not learn a trainable value function Q4 (s, a) to estimate Q" (s, a)
directly?

= Actor and critic

——

Actor g (als) Critic Qo(s,a)

Improve the policy
based on value
estimates provided by
the critic

Evaluate the value of
actions taken by the
actor’s policy

P B
e o o e o = =

[J N U U ———— - N, w e - - - - - - = - = -

Training of the Actor-Critic Algorithm

= Critic: Qg (s, a)
= Learns to accurately estimate the action-value under the current actor
policy
Q(D (S, Cl) = T'(S, (1) T y]E5'~p(S'|S,a),a'~7T9(a'|S') [QCD (S’, a’)]

= Actor: mg(als)
= | earns to take actions that maximize the critic’s estimated value
J(0) = Esepnylme(als)Qa(s, a)l

0j(0) _ . [0logme(als)
a0 o 00

QCD (S' a)

O =~ N W OO

A2C: Advantageous Actor-Critic

" |dea: Normalize the critic’s score by subtracting a baseline
function (often a value function V(s))
" Provides more informative feedback:

= Decrease the probability of worse-than-average actions
" Increase the probability of better-than-average actions

" Helps to further reduce variance in policy gradient estimates
A™(s,a) = Q™(s,a) — V™(s)

I | -
5 i I |
A3 A4 A5 -

I A2 . A4 A5
A1 A2

W N =2 O =~ N W

Deep RL

160

Value methods: DQN

" Deep Q-Network (DQN)

= Uses a deep neural network to approximate Q(s,a)
= —> Replaces the Q-table with a parameterized function for scalability

" The network takes state s as input, outputs Q-values for all actions a simultaneously

Convolution Convolution Fully connected Fully connected
w A s w

of | B /m

ot | /s L\
B-oeom -0 :o:

o | O

of] | E \m

¢

AR vy]
[BX BN BN BN BY BX B ~ €« ¥ £
HEBEEERERACRAREAR

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.

DQN (cont.)

" |Intuition: Use a deep neural network to approximate Q(s,a)

" [nstability arises in the learning process

= Samples {(s¢, a¢, S¢+1, 7¢) } are collected sequentially and do not satisfy the i.i.d.
assumption

" Frequent updates of Q(s,a) cause instability

" Solutions: Experience replay

= Store transitions e; = (S, s, S¢4+1,73) in a replay buffer D
Sample uniformly from D to reduce sample correlation

* Dual network architecture: Use an evaluation network and a target
network for improved stability

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Target network

* Target network Qg-(s, a)

* Maintains a copy of the Q-network with older parameters 6~

 Parameters 8~ are updated periodically (every C steps) to match the evaluation

network

= Loss Function (at iteration i)

2

Li(6) = Esqapsesarope-n |3 @t + 7 max Qo (ses1,@") — Qg (5, a)Y?]

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavuke

=+

—

p

=

=

oglu, Silver et al. (201

06

DQN training procedure

" Collect transitions using an e-greedy exploration policy

= Store {(s¢, ¢, S¢4+1,7+) } into the replay buffer
= Sample a minibatch of k transitions from the buffer
" Update networks:

= Compute the target using the sampled transitions
* Update the evaluation network Qg

* Every C steps, synchronize the target network Qg- with the evaluation
network

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Overestimation in Q-Learning

= Q-function overestimation
* The target value is computed as: Y¢ =1 TV rr:la,lx Qo (s¢+1,a’)

" The max operator leads to increasingly larger Q-values, potentially
exceeding the true value

= Cause of overestimation
{9251(Qo' (St+1,a’) = Qgr(S¢4q,arg HE}X Qo' (St+1,a"))

" The chosen action might be overestimated due to Q-function error

Double DQN

" Uses two separate networks for action selection and value
estimation, respectively.

DQN y: =1 +vQo(St+1,ar8 max Qo(St+1,a'))

“~

Double DQN Y: =1t + V¥

(5t+1,2rg max Qp (5e41,a")

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)

= Advantage function A7(s

Q(s,a;0,a,p)

Q(s,a;0,a,p)

=V(s;0,B) +

Dueling DQN

Q™ (s,

,a) = Q"(s,a) — V(s)

a) = E[R;|s; = s,a; = a,]

VT (s) = Eq-n(s) Q" (s, a)]

= Different forms of advantage aggregation

(A(s,a;0,a) — rr}szﬁﬂA(S a’;0,a))

=V(s;0,p) +

(A(s,a;0,a) — |A|z A(s,a’;0,a))

Policy network gradient

" For stochastic policies, the probability of selecting an action is

typically modeled using a softmax function:
ef@(sla)
Za, efG(S'a,)

mg(als) =

" fo(s,a)isascore function (e.g., logits) for the state-action pair
* Parameterized by 0, often realized via a neural network

" Gradient of the log-form

dlogmg(als) _ dfe (s, a) Z ofo s,a’ afg(s a'")
90 06 Z ,efe(S a’)

_Of(sa) o 0fo(s, a’)
~ 99 erme@lD | g

Policy network gradient (cont.)

" Gradient of the log-form

dlogmg(als) dfe(s, a) " dfe(s,a’)
0 90 a'~mp(@'ls) [T g9
" Gradient of the policy network
d](0) dlogmg(als)
0 ~Fr| a5 000 “)]

(0fg(s,) fo(s, @)\ \n
=]En9 (669 _Ea'~n9(a’|s)[060])Q B(S,a)]

) \
1 1

Back propagation Back propagation

Comparison: DQN v.s. Policy gradient

= Q-Learning:
" Learns a Q-value function Qg (s, a) parameterized by 0

= QObjective: Minimize the TD error
" Policy gradient
" Learns a policy mg(a | s) directly, parameterized by 6

= Objective: Maximize the expected return directly
max J(0) = Ep,[Q7(s,)]

9] () dlogry (als) -
— e
Y 0+ aE,, PY: Q"9(s,a)

0 <0+«

Limitations of policy gradient methods

" Learning rate (step size) selection is challenging in policy gradient
algorithms

= Since the data distribution changes as the policy updates, a previously
good learning rate may become ineffective.

= A poor choice of step size can significantly degrade performance:

" Too large - policy diverges or collapses
" Too small = slow convergence or stagnation @

FTRER
IR

Optimization gap of the objective function

.) .](0) — IET~p9(‘c) [Ztytr(str at)]
" New policy 8" and old policy 6 J(8) = Eg -y sy [V (50)]

J(@") —Jj@6)=Jj'") - IIE':5>'0~p(so) [V (s0)]

= IET~p91(T) [2 ytATO(sq, a,)]
i t=0 *

Sampling
inconvenience A™0 (s, a) = QT0(s¢, ap) —V™ (s¢)

Importance sampling

A™0 (s;, a;)
70— 1(6) — Q70 (s,, a) V7 (s,)
= 1:~P 1(T) [2 ytAne (St at)]

= z IESt~p9’ (St) []Eat~7t9/(at |St) [ytAne (St' a’t)]]
t

- E E [77"9’(at|5t) tAms (s, a,)]]
st~Pg! (st) L a~mg(At|St) g (atlst))4 t) At
t é h

Do, approximation Importance sampling

TRPO Policy Constraint

" Use KL divergence to constrain policy update magnitude:

mgr(aclse) ,
TS Y A™O (se, ap)]]

such that Eg, ., (s)[Dxe (”9’ (aclse) Il o (atlst))] S€

' < arg mgarlxz Esi~po(se) [IEat~7T9(at|St)[
t

" |[n practice: use penalized objective with KL divergence penalty instead
of hard constraint
Tgr(at|se)

/ tpm
0" « arg n}ga}x Z Es~pg(se) []Eat~n9(at|5t)[n9 (a¢|sg) AT (s adll

—A(Dg(myr(aclse) | mg(aelse)) — €)

= Update 6’ and 4 « A + a(Dgy (g (aclsy) Il mg(aslsy)) — €)

TRPO Drawbacks

Use KL divergence to constrain policy update magnitude:

mor(aelse) , -
sy (5]

such that E, g (s, [Dic (g1 (aclse) 1l g (acls,))] < e

0" « arg “};”,"‘2 Ese~po(so) [Ear~mg(ar]sy)l
t

" |n practice: use penalized objective with KL divergence penalty instead
of hard constraint
Tgr(at|St)

/ tpm
0" « arg InBE,lX Z IESt"'pB(St) [IEat~ﬂe(at|St)[7t9 (at |St) 4 4 O(St’ at)]]
t

—A(Dg (mgr(aglse) Il mg(aglsy)) —€)

= Update 8’ and A « A + a(Dg (g (aclse) | mg(aglsy)) — €)

" High variance from importance weights
= Difficult to solve constrained optimization

Proximal Policy Optimization (PPO)

" Clipped Surrogate Objective

Tlg (at|3t) A

conservative —_ "
A | = Eg [rt (9>At]
g 14 (atlse)

policy iteration

LCPI (0) — Et [

LCLP(9) = E,|min(r,(6)A,, dlip(r:(8),1 —€,1 + €) 4,)]

A<O
JCLIP A>0

Construct the lower bound: LCLIP(9) < LCPI(Q)

_\ Equivalent at r=1: LELIP(9) = [CPI(g)

1L i
0 1 1+¢ LCLIP

PPO: improvement over TRPO

= 1.Clipped surrogate objective

Tlg (at|3t) A

conservative —_ "
A | = Eg [rt (H)At]
g 14 (atlse)

policy iteration

LEP1(9) = E, [

LCLP(9) = E,|min(r,(6)A,, dlip(r:(8),1 —€,1 + €) 4,)]
=) .Generalized advantage estimation
Ap = =V(s) +r+yrga + -+ vy e + vy (sy)

= Use parallel actors to collect rollouts, compute advantage estimates,
and update parameters with minibatches.

PPO: improvement over TRPO

= 3. Adaptive penalty parameter

LKLPEN (g) — i, [nzc(f(ljj;)t) A, — BKL[mg (- Isp)|me (: |St>]]

= Adjust the penalty coefficient B dynamically:
= Compute the KLvalue d = E, {KL[ngold (- Isg)|mg (- |St)]J
" [fd<target/15>B<B/2
" [fd>targetx 1.5 > P& B x2

Note: Here, 1.5 and 2 are empirical parameters, and the algorithm performance is not very sensitive to them

